1
|
Zieniuk B, Małajowicz J, Jasińska K, Wierzchowska K, Uğur Ş, Fabiszewska A. Agri-Food and Food Waste Lignocellulosic Materials for Lipase Immobilization as a Sustainable Source of Enzyme Support-A Comparative Study. Foods 2024; 13:3759. [PMID: 39682831 DOI: 10.3390/foods13233759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Enzyme immobilization is a crucial method in biotechnology and organic chemistry that significantly improves the stability, reusability, and overall effectiveness of enzymes across various applications. Lipases are one of the most frequently applied enzymes in food. The current study investigated the potential of utilizing selected agri-food and waste materials-buckwheat husks, pea hulls, loofah sponges, and yerba mate waste-as carriers for the immobilization of Sustine® 121 lipase and Yarrowia lipolytica yeast biomass as whole-cell biocatalyst and lipase sources. Various lignocellulosic materials were pretreated through extraction processes, including Soxhlet extraction with hexane and ethanol, as well as alkaline and acid treatments for loofah sponges. The immobilization process involved adsorbing lipases or yeast cells onto the carriers and then evaluating their hydrolytic and synthetic activities. Preparations' activities evaluation revealed that alkaline-pretreated loofah sponge yielded the highest hydrolytic activity (0.022 U/mg), while yerba mate leaves under brewing conditions demonstrated superior synthetic activity (0.51 U/mg). The findings underscore the potential of lignocellulosic materials from the agri-food industry as effective supports for enzyme immobilization, emphasizing the importance of material selection and pretreatment methods in optimizing enzymatic performance through giving an example of circular economy application in food processing and waste management.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jolanta Małajowicz
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Karina Jasińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Wierzchowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Şuheda Uğur
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
2
|
Syed N, Singh S, Chaturvedi S, Kumar P, Kumar D, Jain A, Sharma PK, Nannaware AD, Chanotiya CS, Bhambure R, Kumar P, Kalra A, Rout PK. A sustainable bioprocess technology for producing food-flavour (+)-γ-decalactone from castor oil-derived ricinoleic acid using enzymatic activity of Candida parapsilosis: Scale-up optimization and purification using novel composite. J Biotechnol 2024; 393:17-30. [PMID: 39025368 DOI: 10.1016/j.jbiotec.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Ricinoleic acid (RA) from castor oil was employed in biotransformation of peach-flavoured γ-decalactone (GDL), using a Candida parapsilosis strain (MTCC13027) which was isolated from waste of pineapple crown base. Using four variables-pH, cell density, amount of RA, and temperature-the biotransformation parameters were optimized using RSM and BBD. Under optimized conditions (pH 6, 10 % of microbial cells, 10 g/L RA at 28°C), the conversion was maximum and resulted to 80 % (+)-GDL (4.4 g/L/120 h) yield in shake flask (500 mL). Furthermore, optimization was achieved by adjusting the aeration and agitation parameters in a 3 L bioreactor, which were then replicated in a 10 L bioreactor to accurately determine the amount of (+)-GDL. In bioreactor condition, 4.7 g/L (>85 %) of (+)-GDL is produced with 20 % and 40 % dissolved oxygen (1.0 vvm) at 150 rpm in 72 h and 66 h, respectively. Further, a new Al-Mg-Ca-Si composite column-chromatography method is developed to purify enantiospecific (+)-GDL (99.9 %). This (+)-GDL is 100 % nature-identical as validated through 14C-radio-carbon dating. Thorough chemical investigation of enantiospecific (+)-GDL is authenticated for its use as flavour. This bioflavour has been developed through a cost-effective biotechnological process in response to the demand from the food industry on commercial scale.
Collapse
Affiliation(s)
- Naziya Syed
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Shivani Chaturvedi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Prashant Kumar
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Deepak Kumar
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Abhinav Jain
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Praveen Kumar Sharma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Chandan Singh Chanotiya
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Rahul Bhambure
- Biochemical Engineering Department, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Pankaj Kumar
- AMS, Geochronology & Pelletron Group, Inter-University Accelerator Centre, New Delhi 110067, India
| | - Alok Kalra
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Robertson NR, Trivedi V, Lupish B, Ramesh A, Aguilar Y, Carrera S, Lee S, Arteaga A, Nguyen A, Lenert-Mondou C, Harland-Dunaway M, Jinkerson R, Wheeldon I. Optimized genome-wide CRISPR screening enables rapid engineering of growth-based phenotypes in Yarrowia lipolytica. Metab Eng 2024:S1096-7176(24)00122-8. [PMID: 39278589 DOI: 10.1016/j.ymben.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
CRISPR-Cas9 functional genomic screens uncover gene targets linked to various phenotypes for metabolic engineering with remarkable efficiency. However, these genome-wide screens face a number of design challenges, including variable guide RNA activity, ensuring sufficient genome coverage, and maintaining high transformation efficiencies to ensure full library representation. These challenges are prevalent in non-conventional yeast, many of which exhibit traits that are well suited to metabolic engineering and bioprocessing. To address these hurdles in the oleaginous yeast Yarrowia lipolytica, we designed a compact, high-activity genome-wide sgRNA library. The library was designed using DeepGuide, an sgRNA activity prediction algorithm and a large dataset of ∼50,000 sgRNAs with known activity. Three guides per gene enables redundant targeting of 98.8% of genes in the genome in a library of 23,900 sgRNAs. We deployed the optimized library to uncover genes essential to the tolerance of acetate, a promising alternative carbon source, and various hydrocarbons present in many waste streams. Our screens yielded several gene knockouts that improve acetate tolerance on their own and as double knockouts in media containing acetate as the sole carbon source. Analysis of the hydrocarbon screens revealed genes related to fatty acid and alkane metabolism in Y. lipolytica. The optimized CRISPR gRNA library and its successful use in Y. lipolytica led to the discovery of alternative carbon source-related genes and provides a workflow for creating high-activity, compact genome-wide libraries for strain engineering.
Collapse
Affiliation(s)
| | - Varun Trivedi
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Brian Lupish
- Bioengineering, University of California, Riverside, Riverside, CA, USA
| | - Adithya Ramesh
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Yuna Aguilar
- Bioengineering, University of California, Riverside, Riverside, CA, USA
| | - Stephanie Carrera
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Sangcheon Lee
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Anthony Arteaga
- Center for Industrial Biotechnology, University of California, Riverside, Riverside, CA, USA
| | - Alexander Nguyen
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | | | | | - Robert Jinkerson
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; Center for Industrial Biotechnology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
4
|
Bibi F, Ilyas N, Saeed M, Shabir S, Shati AA, Alfaifi MY, Amesho KTT, Chowdhury S, Sayyed RZ. Innovative production of value-added products using agro-industrial wastes via solid-state fermentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125197-125213. [PMID: 37482589 DOI: 10.1007/s11356-023-28765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
The prevalence of organic solid waste worldwide has turned into a problem that requires comprehensive treatment on all fronts. The amount of agricultural waste generated by agro-based industries has more than triplet. It not only pollutes the environment but also wastes a lot of beneficial biomass resources. These wastes may be utilized as a different option/source for the manufacturing of many goods, including biogas, biofertilizers, biofuel, mushrooms and tempeh as the primary ingredients in numerous industries. Utilizing agro-industrial wastes as good raw materials may provide cost reduction and lower environmental pollution levels. Agro-industrial wastes are converted into biofuels, enzymes, vitamin supplements, antioxidants, livestock feed, antibiotics, biofertilizers and other compounds via solid-state fermentation (SSF). By definition, SSF is a method used when there is little to no free water available. As a result, it permits the use of solid materials as biotransformation substrates. Through SSF methods, a variety of microorganisms are employed to produce these worthwhile things. SSFs are therefore reviewed and discussed along with their impact on the production of value-added items. This review will provide thorough essential details information on recycling and the use of agricultural waste.
Collapse
Affiliation(s)
- Fatima Bibi
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan.
| | - Maimona Saeed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
- Department of Botany, GC Women University, Sialkot, Pakistan
| | - Sumera Shabir
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Tshwane School for Business and Society, Faculty of Management of Sciences, Tshwane University of Technology, Pretoria, South Africa
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
- Regent Business School, Durban, 4001, South Africa
- Destinies Biomass Energy and Farming Pty Ltd, P.O. Box 7387, Swakomund, Namibia
| | - Subrata Chowdhury
- Department of MCA, Sri Venkateswara College of Engineering and Technology, Chittoor, India
| | - Riyazali Zafarali Sayyed
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
5
|
Singh S, Deepa N, Rastogi D, Chaturvedi S, Syed N, Singh A, Nannaware AD, Rout PK. Biotransformation of ricinoleic acid to γ-decalactone using novel yeast strains and process optimization by applying Taguchi model. J Biotechnol 2023; 377:34-42. [PMID: 37848135 DOI: 10.1016/j.jbiotec.2023.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Flavour molecules are generated now-a-days through microbial fermentation on a commercial scale. γ-Decalactone (GDL) is an important molecule due to its long-lasting flavouring impact as buttery, coconut and peach-type. In the current study, 33 microorganisms were isolated from different fruit sources, and their screening for target GDL production was performed. Using DNA sequencing, two potential strains yielding good amounts of GDL were identified from pineapple and strawberry fruits. The identified strains were Metschnikowia vanudenii (OP954735) and Candida parapsilosis (OP954733), and further optimized by Taguchi method. The effectiveness of lactone production is influenced by the rate of microbial growth under various operating conditions. The factors such as substrate concentration, pH, temperature, cell density and rotation (rpm) with 3 levels were applied for the GDL production using M. vanudenii (OP954735) and C. parapsilosis (OP954733) strains. The results revealed that the highest molar conversion of GDL was 24.69% (115.7 mg/g quantitative yield) and 52.69% (272.0 mg/g quantitative yield) at the optimal conditions using SB-62 and PA-19 strains, respectively. The two novel strains are reported for the first time for production of γ-decalactone and overall, this study opens up the possibility of using Taguchi design for large scale up process development for producing food flavours utilising environmentally friendly natural strains.
Collapse
Affiliation(s)
- Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Nikky Deepa
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Dheerendra Rastogi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Shivani Chaturvedi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Naziya Syed
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Jawaharlal Nehru University, New Delhi, 110067, India
| | - Akanksha Singh
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Wang L, Lin X, Zhou Y, Chen H. Porous inert material as promising carrier enhanced cellulase production from Trichoderma reesei in solid-state fermentation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
AL Mualad WNA, Bouchedja DN, Selmania A, Maadadi R, Ikhlef A, Kabouche Z, Elmechta L, Boudjellal A. Yeast Yarrowia lipolytica as a biofactory for the production of lactone-type aroma gamma-decalactone using castor oil as substrate. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02435-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Syed N, Singh S, Chaturvedi S, Nannaware AD, Khare SK, Rout PK. Production of lactones for flavoring and pharmacological purposes from unsaturated lipids: an industrial perspective. Crit Rev Food Sci Nutr 2022; 63:10047-10078. [PMID: 35531939 DOI: 10.1080/10408398.2022.2068124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The enantiomeric pure and natural (+)-Lactones (C ≤ 14) with aromas obtained from fruits and milk are considered flavoring compounds. The flavoring value is related to the lactones' ring size and chain length, which blend in varying concentrations to produce different stone-fruit flavors. The nature-identical and enantiomeric pure (+)-lactones are only produced through whole-cell biotransformation of yeast. The industrially important γ-decalactone and δ-decalactone are produced by a four-step aerobic-oxidation of ricinoleic acid (RA) following the lactonization mechanism. Recently, metabolic engineering strategies have opened up new possibilities for increasing productivity. Another strategy for increasing yield is to immobilize the RA and remove lactones from the broth regularly. Besides flavor impact, γ-, δ-, ε-, ω-lactones of the carbon chain (C8-C12), the macro-lactones and their derivatives are vital in pharmaceuticals and healthcare. These analogues are isolated from natural sources or commercially produced via biotransformation and chemical synthesis processes for medicinal use or as active pharmaceutical ingredients. The various approaches to biotransformation have been discussed in this review to generate more prospects from a commercial point of view. Finally, this work will be regarded as a magical brick capable of containing both traditional and genetic engineering technology while contributing to a wide range of commercial applications.
Collapse
Affiliation(s)
- Naziya Syed
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| |
Collapse
|
9
|
Attempt to Develop an Effective Method for the Separation of Gamma-Decalactone from Biotransformation Medium. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gamma-decalactone (GDL) is a fragrance compound obtained in the process of β-oxidation of ricinoleic acid, which is derived from the hydrolysis of castor oil. The biotechnological method of the synthesis of this lactone has been improved for over two decades, but the vast majority of research results have been based only on determining the concentration of the lactone by chromatographic methods without separating it from the biotransformation medium. In this study, we attempted to separate GDL from the medium in which the lactone was synthesized by Yarrowia lipolytica from castor oil. The effectiveness of liquid–liquid extraction, hydrodistillation, and adsorption on the porous materials (zeolite, vermiculite and resin Amberlite XAD-4) was compared. The influence of the solvent on the efficiency of GDL extraction, the influence of the acidity of the medium on the amount of GDL in the distillate, and the level of lactone adsorption on the above-mentioned adsorbents were compared by calculating the initial adsorption rate. The adsorption isotherm was determined for the most effective adsorbent. Among the five solvents tested, the most effective was diethyl ether, used at the ratio of 1:1. The extraction was characterized by higher efficiency than hydrodistillation; the difference in GDL determinations by these two methods ranged from 12.8 to 22%. The purity of the distillates was much higher than that of the extracts at 88.0 ± 3.4% compared to 53.0 ± 1.8%. The acidification of the biotransformation medium increased the concentration of the lactone in both the reaction mixture and the distillate. GDL was most efficiently adsorbed on Amberlite XAD-4 resin, for which the lactone isotherm adsorption was linear. The amount of lactone adsorbed on Amberlite XAD-4 within 1 h was approx. 80% (2.45 g), of which 1.96 g was then desorbed with ethanol. In the context of industrial applications, adsorption of GDL on Amberlite XAD-4 seems to be the most appropriate method due to material costs, the ease of the process, and low environmental burden.
Collapse
|
10
|
A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes (Basel) 2022. [DOI: 10.3390/pr10020381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lipases are enzymes that, in aqueous or non-aqueous media, act on water-insoluble substrates, mainly catalyzing reactions on carboxyl ester bonds, such as hydrolysis, aminolysis, and (trans)esterification. Yarrowia lipolytica is a non-conventional yeast known for secreting lipases and other bioproducts; therefore, it is of great interest in various industrial fields. The production of lipases can be carried on solid-state fermentation (SSF) that utilizes solid substrates in the absence, or near absence, of free water and presents minimal problems with microbial contamination due to the low water contents in the medium. Moreover, SSF offers high volumetric productivity, targets concentrated compounds, high substrate concentration tolerance, and has less wastewater generation. In this sense, the present work provides a temporal evolution perspective regarding the main aspects of lipase production in SSF by Y. lipolytica, focusing on the most relevant aspects and presenting the potential of such an approach.
Collapse
|
11
|
Álvarez A, Gutiérrez A, Ramírez C, Cuenca F, Bolívar G. Aroma compounds produced by liquid fermentation with Saccharomyces cerevisiae and Zygosaccharomyces rouxii from castor oil through cell permeabilization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Lorn D, Nguyen TKC, Ho PH, Tan R, Licandro H, Waché Y. Screening of lactic acid bacteria for their potential use as aromatic starters in fermented vegetables. Int J Food Microbiol 2021; 350:109242. [PMID: 34044228 DOI: 10.1016/j.ijfoodmicro.2021.109242] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Lactic acid fermentation is a traditional process to preserve foods and to modify their organoleptic properties. This process is generally conducted in a spontaneous way, allowing indigenous lactic acid bacteria (LAB) of the matrix and of the environment to compete and grow. The aim of this study was to better characterise LAB strains ability to modify aroma profiles in fruit and vegetable matrices, by focusing on two key enzymatic activities: β-glucosidase and alcohol dehydrogenase (ADH). Firstly, 200 LAB isolated from Cambodian and Vietnamese fermented foods were screened for their β-glucosidase activity and duplicate isolates identified through RAPD-PCR analysis were discarded. Thereby, 40 strains were found positive for β-glucosidase using p-nitrophenyl-β-D-glucopyranoside as substrate. Among them, 14 displayed an activity greater than 10 nmol/min/mg dry cell. Thirteen were identified as Lactiplantibacillus (L.) plantarum and one as L. pentosus. Secondly, four strains of different phenotypes for β-glucosidase activity were tested for ADH activity. The highest reduction ability for hexanal and (E)-2-hexenal was obtained for Limosilactobacillus (L.) fermentum V013-1A for which no β-glucosidase activity was detectable. The three other strains (L. plantarum C022-2B, C022-3B, and V0023-4B2) exhibited a lower reduction ability and only for hexanal. Thirdly, mashed tomatoes were fermented with these four strains individually to evaluate their ability to release volatile compounds from the tomato precursors. Fifty-eight volatile compounds were identified and quantified by HS-SPME/GC-MS. Untreated tomatoes were rich in aldehydes. The tomatoes fermented with L. plantarum strains were rich in ketones whereas those with L. fermentum were rich in alcohols. However, for the generation of terpenoids that provide flower and fruit flavours, our screening of β-glucosidase activity was not able to explain the differences among the strains. For ADH activity, L. fermentum exhibited a high activity in fermentation as most of the target aldehydes and ketones disappeared and were replaced by their corresponding alcohols. The L. plantarum strains exhibited a lower activity but with an important substrate-selectivity diversity. A better knowledge of the functionality of each LAB strain in the food matrix will permit to predict and shape the aroma profiles of fermented food.
Collapse
Affiliation(s)
- Da Lorn
- Food Biotechnology & Innovation group, International Joint Research Laboratory, Tropical Bioresources & Biotechnology, Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102 and School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Dijon, France; Faculty of Chemical and Food Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, 12156 Phnom Penh, Cambodia; Tropical Fermentation Network, France.
| | - Thi-Kim-Chi Nguyen
- Food Biotechnology & Innovation group, International Joint Research Laboratory, Tropical Bioresources & Biotechnology, Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102 and School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Dijon, France; Tropical Fermentation Network, France
| | - Phu-Ha Ho
- International Joint Research Laboratory, Tropical Bioresources & Biotechnology, Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102 and School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Viet Nam; Tropical Fermentation Network, France
| | - Reasmey Tan
- Food Technology and Nutrition Research Unit, Research and Innovation Center, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, 12156 Phnom Penh, Cambodia; Tropical Fermentation Network, France
| | - Hélène Licandro
- Food Biotechnology & Innovation group, International Joint Research Laboratory, Tropical Bioresources & Biotechnology, Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102 and School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Dijon, France; Tropical Fermentation Network, France
| | - Yves Waché
- Food Biotechnology & Innovation group, International Joint Research Laboratory, Tropical Bioresources & Biotechnology, Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102 and School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Dijon, France; Tropical Fermentation Network, France
| |
Collapse
|
13
|
Šelo G, Planinić M, Tišma M, Tomas S, Koceva Komlenić D, Bucić-Kojić A. A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation. Foods 2021; 10:foods10050927. [PMID: 33922545 PMCID: PMC8146281 DOI: 10.3390/foods10050927] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Agro-food industrial residues (AFIRs) are generated in large quantities all over the world. The vast majority of these wastes are lignocellulosic wastes that are a source of value-added products. Technologies such as solid-state fermentation (SSF) for bioconversion of lignocellulosic waste, based on the production of a wide range of bioproducts, offer both economic and environmental benefits. The versatility of application and interest in applying the principles of the circular bioeconomy make SSF one of the valorization strategies for AFIRs that can have a significant impact on the environment of the wider community. Important criteria for SSF are the selection of the appropriate and compatible substrate and microorganism, as well as the selection of the optimal process parameters for the growth of the microorganism and the production of the desired metabolites. This review provides an overview of the management of AFIRs by SSF: the current application, classification, and chemical composition of AFIRs; the catalytic function and potential application of enzymes produced by various microorganisms during SSF cultivation on AFIRs; the production of phenolic compounds by SSF; and a brief insight into the role of SSF treatment of AFIRs for feed improvement and biofuel production.
Collapse
|
14
|
Martínez-Avila O, Muñoz-Torrero P, Sánchez A, Font X, Barrena R. Valorization of agro-industrial wastes by producing 2-phenylethanol via solid-state fermentation: Influence of substrate selection on the process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:403-411. [PMID: 33445113 DOI: 10.1016/j.wasman.2020.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
2-phenylethanol (2-PE) is a value-added compound widely used in industry due to its rose-like odor and antibacterial properties that can be bioproduced using wastes as raw materials. This study presents the valorization of nine agro-industrial wastes as potential substrates for 2-PE production using an isolated 2-PE producer Pichia kudriavzevii, and the solid-state fermentation (SSF) technology as an alternative approach. The assessed substrates comprised wastes of varied traits such that each of them provided different characteristics to the fermentation. Thus, by using a principal component analysis (PCA), it was possible to identify the most significant characteristics associated with the substrates affecting the 2-PE production. Results show that L-phenylalanine biotransformation was more efficient than de novo synthesis for producing 2-PE. Besides, from the evaluated set, the maximum 2-PE production was achieved with red apple pomace, reaching 1.7 and 25.2 mg2PE per gram of used waste through de novo and L-phenylalanine biotransformation, respectively. In that scenario, volumetric productivity and precursor yield were 39.6 mg2PE L-1h-1 and 0.69 g2PE per gram of L-phenylalanine added, respectively. From the PCA, it was identified that the reducing sugars content of the substrate, the air-filled porosity of the bed and the L-phenylalanine availability were the most critical parameters (associated with the substrates) influencing the microbial activity and 2-PE production. These results suggest that the desirable traits a solid media needs for promoting 2-PE production via SSF could be reached by using a combination of wastes in a synergistic approach.
Collapse
Affiliation(s)
- Oscar Martínez-Avila
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Patricia Muñoz-Torrero
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Antoni Sánchez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Xavier Font
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Raquel Barrena
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
15
|
Małajowicz J, Nowak D, Fabiszewska A, Iuliano A. Comparison of gamma-decalactone biosynthesis by yeast Yarrowia lipolytica MTLY40-2p and W29 in batch-cultures. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1749528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Jolanta Małajowicz
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Dorota Nowak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Anna Iuliano
- Department of Chemistry and Technology of Polymers, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
16
|
Liu X, Yan Y, Zhao P, Song J, Yu X, Wang Z, Xia J, Wang X. Oil crop wastes as substrate candidates for enhancing erythritol production by modified Yarrowia lipolytica via one-step solid state fermentation. BIORESOURCE TECHNOLOGY 2019; 294:122194. [PMID: 31585340 DOI: 10.1016/j.biortech.2019.122194] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Oil crop wastes are attractive feedstocks in microbial processes due to their low cost. However, the product yields can be limited by their undesirable nitrogen surplus. Present study proposed a one-step solid state fermentation (SSF) method for producing erythritol from unrefined oil crop wastes using a modified strain Y. lipolytica M53-S. Enhanced erythritol production (185.4 mg/gds) was obtained from peanut press cake mixed with 40% sesame meal and 10% waste cooking oil. The process was performed at pH 4.0 in 5 L flasks, with initial moisture content, NaCl addition, and inoculum size of 70%, 0.02 g/gds, and 7.5 × 104 cells/gds, respectively. This procedure showed advantages in terms of lower material cost than that of submerged fermentation and shorter culture cycle (96 h) than other SSF processes. In repeated-batch fermentation, erythritol was continuously produced for seven cycles. This study presents a feasible approach in developing an efficient erythritol cultivation from nitrogen-rich wastes.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.
| | - Yubo Yan
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Pusu Zhao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jie Song
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhipeng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Xiaoyu Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| |
Collapse
|
17
|
Qiao W, Tao J, Luo Y, Tang T, Miao J, Yang Q. Microbial oil production from solid-state fermentation by a newly isolated oleaginous fungus, Mucor circinelloides Q531 from mulberry branches. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180551. [PMID: 30564386 PMCID: PMC6281923 DOI: 10.1098/rsos.180551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
In this study, a newly isolated oleaginous fungus, Mucor circinelloides (M. circinelloides) Q531, was able to convert mulberry branches into lipids. The highest yield and the maximum lipid content produced by the fungal cells were 42.43 ± 4.01 mg per gram dry substrate (gds) and 28.8 ± 2.85%, respectively. The main components of lignocellulosic biomass were gradually reduced during solid-state fermentation (SSF). Cellulose, hemicellulose and lignin were decreased from 45.11, 31.39 and 17.36% to 41.48, 28.71, and 15.1%, respectively. Gas chromatography analysis showed that the major compositions of the fermented products were palmitic acid (C16:0, 18.42%), palmitoleic acid (C16:1, 5.56%), stearic acid (C18:0, 5.87%), oleic acid (C18:1, 33.89%), linoleic acid (C18:2, 14.45%) and γ-linolenic acid (C18:3 n6, 22.53%) after 2 days of SSF. The fatty acid methyl esters contained unsaturated fatty acids with a ratio of 75.95%. The composition and content obtained in this study are more advantageous than those of many other biomass lipids. Meanwhile, the oleaginous fungus had a high cellulase activity of 1.39 ± 0.09 FPU gds-1. The results indicate that the enzyme activity of the isolated fungus was capable of converting the cellulose and hemicelluloses to available sugar monomers which are beneficial for the production of lipids.
Collapse
|
18
|
Liu X, Yu X, Zhang T, Wang Z, Xu J, Xia J, He A, Yan Y, Xu J. Novel two-stage solid-state fermentation for erythritol production on okara-buckwheat husk medium. BIORESOURCE TECHNOLOGY 2018; 266:439-446. [PMID: 30005411 DOI: 10.1016/j.biortech.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
An economical model of two-stage solid state fermentation (SSF) (prefermentation stage with Mucor flavus and in situ erythritol fermentation stage with Yarrowia lipolytica) for enhancing erythritol production was investigated. Buckwheat husk (BH) was utilized as inert support for the first time and okara as the substrate. Morphological properties suggested yeast cells were exposed in adequate oxygen leading to high erythritol yield, and enzyme activities analysis indicated M. flavus and Y. lipolytica grew and cooperated well during the two ferment stages. Maximum erythritol production (143.3 mg/gds) was obtained from okara-BH mixture (5:2, w/w) supplemented with 0.01 g/gds NaCl, with an initial moisture content of 60% and pH of 4.0 for 192 h, while undesired mannitol and citric acid were suppressed. Compared with submerged fermentation, two-stage SSF was short period, energy conserving and operable for erythritol production from insoluble wastes, and this is the first report on erythritol production via SSF.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Jiangsu Province, China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tong Zhang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Zhipeng Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China.
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Yubo Yan
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jiming Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| |
Collapse
|
19
|
Aroma compounds production by solid state fermentation, importance of in situ gas-phase recovery systems. Appl Microbiol Biotechnol 2018; 102:7239-7255. [PMID: 29938320 DOI: 10.1007/s00253-018-9157-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
Flavour and fragrance compounds are extremely important for food, feed, cosmetic and pharmaceutical industries. In the last decades, due to the consumer's increased trend towards natural products, a great interest in natural aroma compounds has arisen to the detriment of chemically synthesised ones. Recently, solid state fermentation (SSF) has been applied in the production of many metabolites. Aroma compounds can be produced by SSF with a higher yield compared to submerged fermentation (SmF). In SSF processes, aroma compounds can be produced in the solid matrix or in the headspace, but they can be lost or stripped when aeration is required. This review focuses on the production of aroma compounds by SSF processes with a special highlight on in situ systems to recover the volatiles released in the gaseous phase and stripped due to aeration. Following a brief presentation of specificities of SSF processes concerning the choice of microorganisms and the solid matrix used for the production of aroma compounds, bioreactor aspects, factors affecting production of aroma compounds and in situ gas phase aroma recovery systems in aerated SSF bioreactors are discussed.
Collapse
|
20
|
WITHDRAWN: Dataset on solid state fermentation for the production of lactones by Yarrowia lipolytica. Data Brief 2018. [DOI: 10.1016/j.dib.2018.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|