1
|
Yi P, Liu M, Hao Y, Wang Z, Liu H, Cai X, Cheng F, Liu Z, Xue Y, Jin L, Zheng Y. Identification of efficient amine transaminase and applicability in dual transaminases cascade for synthesis of L-phosphinothricin. Enzyme Microb Technol 2024; 180:110501. [PMID: 39197217 DOI: 10.1016/j.enzmictec.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024]
Abstract
L-phosphinothricin (L-PPT) is the most popular broad-spectrum and highly effective herbicide. Transaminases (TAs) play a pivotal role in asymmetric synthesis of L-PPT, yet encounter the challenge of unfavorable reaction equilibrium. In this study, the novel dual transaminases cascade system (DTCS) was introduced to facilitate the synthesis of L-PPT. The specific amine transaminase BdATA, originating from Bradyrhizobium diazoefficiens ZJY088, was screened and identified. It exhibited remarkable activity, good stability, and required only 2.5 equivalents of isopropylamine to transform pyruvate effectively. By coupling BdATA with previously reported SeTA to construct the DTCS for pyruvate removal in situ, the L-PPT yield escalated from 37.37 % to 85.35 %. Three advantages of the DTCS were presented: the removal of pyruvate alleviated by-product inhibition, the use of isopropylamine reduced reliance on excess L-alanine, and no demand for expensive cofactors like NAD(P)H. It demonstrated an innovative idea for addressing the challenges associated with transaminase-mediated synthesis of L-PPT.
Collapse
Affiliation(s)
- Puhong Yi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mengdan Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuhua Hao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ziwen Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hanlin Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feng Cheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yaping Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liqun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
2
|
Wang YS, Gong MH, Wang JH, Yu JC, Li MJ, Xue YP, Zheng YG. Heterologous expression of a deacetylase and its application in L-glufosinate preparation. Bioprocess Biosyst Eng 2023; 46:1639-1650. [PMID: 37733076 DOI: 10.1007/s00449-023-02925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
With potent herbicidal activity, biocatalysis synthesis of L-glufosinate has drawn attention. In present research, NAP-Das2.3, a deacetylase capable of stereoselectively resolving N-acetyl-L-glufosinate to L-glufosinate mined from Arenimonas malthae, was heterologously expressed and characterized. In Escherichia coli, NAP-Das2.3 activity only reached 0.25 U/L due to the formation of inclusive bodies. Efficient soluble expression of NAP-Das2.3 was achieved in Pichia pastoris. In shake flask and 5 L bioreactor fermentation, NAP-Das2.3 activity by recombinant P. pastoris reached 107.39 U/L and 1287.52 U/L, respectively. The optimum temperature and pH for N-acetyl-glufosinate hydrolysis by NAP-Das2.3 were 45 °C and pH 8.0, respectively. The Km and Vmax of NAP-Das2.3 towards N-acetyl-glufosinate were 25.32 mM and 19.23 μmol mg-1 min-1, respectively. Within 90 min, 92.71% of L-enantiomer in 100 mM racemic N-acetyl-glufosinate was converted by NAP-Das2.3. L-glufosinate with high optical purity (e.e.P above 99.9%) was obtained. Therefore, the recombinant NAP-Das2.3 might be an alternative for L-glufosinate biosynthesis.
Collapse
Affiliation(s)
- Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Mei-Hua Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jin-Hao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jia-Cheng Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Mei-Jing Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China.
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China.
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
3
|
Simultaneous directed evolution of coupled enzymes for efficient asymmetric synthesis of l-phosphinothricin. Appl Environ Microbiol 2021; 87:AEM.02563-20. [PMID: 33310717 PMCID: PMC8090864 DOI: 10.1128/aem.02563-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The traditional strategy to improve the efficiency of an entire coupled enzyme system relies on separate direction of the evolution of enzymes involved in their respective enzymatic reactions. This strategy can lead to enhanced single-enzyme catalytic efficiency but may also lead to loss of coordination among enzymes. This study aimed to overcome such shortcomings by executing a directed evolution strategy on multiple enzymes in one combined group that catalyzes the asymmetric biosynthesis of l-phosphinothricin. The genes of a glutamate dehydrogenase from Pseudomonas moorei (PmGluDH) and a glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), along with other gene parts (promoters, ribosomal binding sites (RBSs), and terminators) were simultaneously evolved. The catalytic efficiency of PmGluDH was boosted by introducing the beneficial mutation A164G (from 1.29 s-1mM-1 to 183.52 s-1mM-1), and the EsGDH expression level was improved by optimizing the linker length between the RBS and the start codon of gdh. The total turnover numbers of the bioreaction increased from 115 (GluDH WTNADPH) to 5846 (A164GNADPH coupled with low expression of EsGDH), and to 33950 (A164GNADPH coupled with high expression of EsGDH). The coupling efficiency was increased from ∼30% (GluDH_WT with low expression of GDH) to 83.3% (GluDH_A164G with high expression of GDH). In the batch production of l-phosphinothricin utilizing whole-cell catalysis, the strongest biocatalytic reaction exhibited a high space-time yield (6410 g·L-1·d-1) with strict stereoselectivity (>99% enantiomeric excess).Importance: The traditional strategy to improve multienzyme-catalyzed reaction efficiency may lead to enhanced single-enzyme catalytic efficiency but may also result in loss of coordination among enzymes. We describe a directed evolution strategy of an entire coupled enzyme system to simultaneously enhance enzyme coordination and catalytic efficiency. The simultaneous evolution strategy was applied to a multienzyme-catalyzed reaction for the asymmetric synthesis of l-phosphinothricin, which not only enhanced the catalytic efficiency of GluDH but also improved the coordination between GluDH and GDH. Since this strategy is enzyme-independent, it may be applicable to other coupled enzyme systems for chiral chemical synthesis.
Collapse
|
4
|
Kang XM, Cai X, Liu ZQ, Zheng YG. Secretory expression and characterization of a novel amidase from Kluyvera cryocrescens in Bacillus subtilis. Biotechnol Lett 2020; 42:2367-2377. [DOI: 10.1007/s10529-020-02959-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/08/2020] [Indexed: 10/23/2022]
|
5
|
A Rapid Method for the Selection of Amidohydrolases from Metagenomic Libraries by Applying Synthetic Nucleosides and a Uridine Auxotrophic Host. Catalysts 2020. [DOI: 10.3390/catal10040445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the development of a rapid, high-throughput method for the selection of amide-hydrolysing enzymes from the metagenome is described. This method is based on uridine auxotrophic Escherichia coli strain DH10B ∆pyrFEC and the use of N4-benzoyl-2’-deoxycytidine as a sole source of uridine in the minimal microbial M9 medium. The approach described here permits the selection of unique biocatalysts, e.g., a novel amidohydrolase from the activating signal cointegrator homology (ASCH) family and a polyethylene terephthalate hydrolase (PETase)-related enzyme.
Collapse
|
6
|
Screening of Fungi Isolates for C-4 Hydroxylation of R-2-Phenoxypropionic Acid Based on a Novel 96-Well Microplate Assay Method. Appl Biochem Biotechnol 2020; 192:42-56. [PMID: 32212108 DOI: 10.1007/s12010-020-03303-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
R-2-(4-Hydroxyphenoxy)propionic acid (R-HPPA) is a pivotal intermediate for the synthesis of aryloxyphenoxypropionate (APP) herbicide. To rapidly screen microbial isolates with the capacity of hydroxylating R-2-phenoxypropionic acid to R-HPPA from various environmental samples, a convenient and safe 96-well microplate assay method with sodium nitrite (NaNO2) as chromogenic reagent was proposed and optimized. The optimum assay conditions were as follows: the detection wavelength was 420 nm, the concentration of NaNO2 solution was 6.0 g/L, color reaction temperature was 60 °C, the pH of the NaNO2 solution was 2.4, and the reaction time was 40 min. With the aid of this method, screening for microorganisms with C-4-specific hydroxylation activity of R-PPA was conducted. As a result, 23 strains among 3744 single colonies isolated from various samples exhibited the hydroxylation activity. Among these strains, the highest bioconversion rate was achieved by Penicillium oxalicum A5 and Aspergillus versicolor A12, respectively. After 72-h cultivation in shake flask, their conversion rates of R-HPPA from 10 g/L R-PPA reached 21.18% and 40.24%, respectively. The established method was effective in rapid screening of microbes capable of biosynthesizing R-HPPA through hydroxylation of R-PPA, and the obtained two fungi species could be potentially used for R-HPPA production.
Collapse
|
7
|
Cheng F, Li H, Zhang K, Li QH, Xie D, Xue YP, Zheng YG. Tuning amino acid dehydrogenases with featured sequences for L-phosphinothricin synthesis by reductive amination. J Biotechnol 2020; 312:35-43. [PMID: 32135177 DOI: 10.1016/j.jbiotec.2020.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/16/2020] [Accepted: 03/01/2020] [Indexed: 01/23/2023]
Abstract
Biosynthesizing unnatural chiral amino acids is challenging due to the limited reductive amination activity of amino acid dehydrogenase (AADH). Here, for the asymmetric synthesis of l-phosphinothricin from 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), a glutamate dehydrogenase gene (named GluDH3) from Pseudomonas monteilii was selected, cloned and expressed in Escherichia coli (E. coli). To boost its activity, a "two-step"-based computational approach was developed and applied to select the potential beneficial amino acid positions on GluDH3. l-phosphinothricin was synthesized by GluDH-catalyzed asymmetric amination using the d-glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH) for NADPH regeneration. Using lyophilized E. coli cells that co-expressed GluDH3_V375S and EsGDH, up to 89.04 g L-1 PPO loading was completely converted to l-phosphinothricin within 30 min at 35 °C with a space-time yield of up to 4.752 kg·L-1·d-1. The beneficial substitution V375S with increased polar interactions between K90, T193, and substrate PPO exhibited 168.2-fold improved catalytic efficiency (kcat/KM) and 344.8-fold enhanced specific activity. After the introduction of serine residues into other GluDHs at specific positions, forty engineered GluDHs exhibited the catalytic functions of "glufosinate dehydrogenase" towards PPO.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Heng Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Kai Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Qing-Hua Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Dong Xie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
8
|
Kang XM, Cai X, Huang ZH, Liu ZQ, Zheng YG. Construction of a highly active secretory expression system in Bacillus subtilis of a recombinant amidase by promoter and signal peptide engineering. Int J Biol Macromol 2020; 143:833-841. [DOI: 10.1016/j.ijbiomac.2019.09.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
|
9
|
Cao CH, Cheng F, Xue YP, Zheng YG. Efficient synthesis of L-phosphinothricin using a novel aminoacylase mined from Stenotrophomonas maltophilia. Enzyme Microb Technol 2019; 135:109493. [PMID: 32146938 DOI: 10.1016/j.enzmictec.2019.109493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/12/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
L-phosphinothricin (L-PPT) is a competitive and environmentally friendly herbicide. To develop an efficient approach for synthesis of l-PPT, a kinetic resolution route with a novel aminoacylase (SmAcy) mined from Stenotrophomonas maltophilia using N-acetyl-PPT as a substrate was first constructed. This SmAcy exhibited high hydrolytic activity and excellent enantioselectivity (E > 200) toward N-acetyl-PPT. Optically pure l-PPT (> 99.9 % eep) was acquired with high conversion (> 49 %) within 4 h by the whole cells. On the basis of the docking analysis, a main reason for high enantioselectivity (E > 200) of SmAcy towards l-enantiomer would be that the D-N-acetyl-PPT cannot interact with the key general acid-base residue and the metal ions. A low-cost and simple preparation process of the substrate from commercially available racemic PPT for production of L-PPT was provided. A chemical racemization method of the unreacted D-enantiomer of substrate was also provided to recycle the unwanted substrate enantiomer. This study provides a potential route for the industrial production of L-PPT.
Collapse
Affiliation(s)
- Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
10
|
Kang XM, Cai X, Liu ZQ, Zheng YG. Identification and characterization of an amidase from Leclercia adecarboxylata for efficient biosynthesis of L-phosphinothricin. BIORESOURCE TECHNOLOGY 2019; 289:121658. [PMID: 31234070 DOI: 10.1016/j.biortech.2019.121658] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
L-phosphinothricin (L-PPT) is an important broad-spectrum herbicide with expanding utilization because it is environmentally benign. A strain Leclercia adecarboxylata ZJB-17008 with capability of catalyzing rac-4-(hydroxy(methyl)phosphoryl)-2-(2-phenylacetamido) butanoic acid (rac-S) to L-PPT was screened and identified, from which an amidase (La-Ami) was cloned and secretory expressed in Bacillus subtilis WB 800 for the bioproduction of L-PPT. The recombinant La-Ami exhibited an excellent enantioselectivity (99.9% ee) and remarkable thermostability with a half-life of 19.8 h at 50 °C. Furthermore, La-Ami displaying a high space-time yield of 787.2 g L-1 d-1 at 50 °C and pH 8.5 under the rac-S concentration of 500 mM (150 g L-1). The finally refined L-PPT was obtained with a purity of 99% and a total yield reached 90%. These results implying that this secretory expressed amidase La-Ami is possible to be applied in the large-scale bioproduction of L-PPT.
Collapse
Affiliation(s)
- Xue-Mei Kang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
11
|
Asymmetric synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using a self-sufficient biocatalyst based on carbonyl reductase and cofactor co-immobilization. Bioprocess Biosyst Eng 2019; 43:21-31. [PMID: 31542820 DOI: 10.1007/s00449-019-02201-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/15/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate [(3R,5S)-CDHH] is the key chiral intermediate to synthesize the side chain of the lipid-lowering drug rosuvastatin. Carbonyl reductases showed excellent activity for the biosynthesis of (3R,5S)-CDHH. The requirement of cofactor NADH/NADPH leads to high cost for the industrial application of carbonyl reductases. In this study, a self-sufficient biocatalyst based on carbonyl reductase and NADP+ co-immobilization strategy was developed on an amino resin carrier LX-1000HAA (SCR-NADP+@LX-1000HAA). The self-sufficient biocatalyst achieved in situ cofactor regeneration and showed the activity recovery of 77.93% and the specific activity of 70.45 U/g. Asymmetric synthesis of (3R,5S)-CDHH using SCR-NADP+@LX-1000HAA showed high enantioselectivity (> 99% e.e.) and yield (98.54%). Batch reactions were performed for ten cycles without extra addition of NADP+, and the total yield of (3R,5S)-CDHH achieved at 10.56 g/g biocatalyst. The present work demonstrated the potential of the self-sufficient biocatalyst for the asymmetric biosynthesis of rosuvastatin intermediate.
Collapse
|