1
|
Chen Y, Zhang Y, Shi X, Xu L, Zhang L, Zhang L. The succession of GH 6 cellulase-producing microbial communities and temporal profile of GH 6 gene abundance during vermicomposting of maize stover and cow dung. BIORESOURCE TECHNOLOGY 2022; 344:126242. [PMID: 34744029 DOI: 10.1016/j.biortech.2021.126242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Vermicomposting eco-friendly converts lignocellulosic wastes into bio-organic fertilizer. Cellulose is the most abundant carbohydrate in lignocellulose. Glycoside hydrolase family 6 (GH6) plays a key role in the early step of cellulose degradation, which is essential for stabilizing lignocellulose. This study intends to quantify the abundance of GH6 gene and to clarify the succession of GH6 cellulase-producing microbial communities during vermicomposting. 100% of maize stover (A) and maize stover and cow dung at 60:40 ratio (B) were used. The results showed that different native genera were observed in the starting materials. Cellulomonas and Cellulosimicrobium were dominant genera harboring GH6 gene. The peak relative abundance of Cellulomonas was 76% and 30% in B and A during vermicomposting phase, and the corresponding values of Cellulosimicrobium was 36% and 37%. Earthworms increased the abundance of GH6 gene, which reached 1.51E + 09 from 3.46E + 08 copies/g in B. The results partially interpreted promoting effect of earthworms.
Collapse
Affiliation(s)
- Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, MS 39567, United States
| | - Xiong Shi
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Lixin Xu
- College of Life Science, Jilin University, Changchun 130012, China
| | - Lei Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Luwen Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
2
|
Jiang Z, Long L, Liang M, Li H, Chen Y, Zheng M, Ni H, Li Q, Zhu Y. Characterization of a glucose-stimulated β-glucosidase from Microbulbifer sp. ALW1. Microbiol Res 2021; 251:126840. [PMID: 34375805 DOI: 10.1016/j.micres.2021.126840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Glucose-tolerant and/or glucose-stimulated β-glucosidase is of great interest for its industrial utilization in enzymatic digestion of lignocellulosic biomass for biofuel production. In this study, a new gene of β-glucosidase MaGlu1A was cloned from an alginate-degrading marine bacterium Microbulbifer sp. ALW1. The gene of MaGlu1A encoded a 472-amino acid protein classified into the glycosyl hydrolase family 1 (GH1). The recombinant β-glucosidase was overexpressed and purified from Escherichia coli with a molecular mass of 65.0 kDa. Structure analysis illustrated the catalytic acid/base residue Glu186 and nucleophilic residue Glu370 in the enzyme. MaGlu1A displayed optimal activity at 40 °C and pH 4.5, respectively. It had substrate preference to the aryl-β-glycosidic bonds with glucose, fucose, and galactose moieties, in addition to cellobiose. MaGlu1A demonstrated strong stimulation to the supplemental glucose. Site-directed mutagenesis suggested an essential role of Asn242 in glucose stimulation. The enzymatic characterization of MaGlu1A provides general information about its catalytic properties facilitating its practical applications.
Collapse
Affiliation(s)
- Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, 361021, China
| | - Liufei Long
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Meifang Liang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Hebin Li
- Xiamen Medical College, Xiamen, 361008, China
| | - Yanhong Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, 361021, China
| | - Mingjing Zheng
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, 361021, China
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, 361021, China
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, 361021, China.
| |
Collapse
|
3
|
Bai L, Kim J, Son KH, Shin DH, Ku BH, Kim DY, Park HY. Novel Anti-Fungal d-Laminaripentaose-Releasing Endo-β-1,3-glucanase with a RICIN-like Domain from Cellulosimicrobium funkei HY-13. Biomolecules 2021; 11:biom11081080. [PMID: 34439747 PMCID: PMC8394091 DOI: 10.3390/biom11081080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Endo-β-1,3-glucanase plays an essential role in the deconstruction of β-1,3-d-glucan polysaccharides through hydrolysis. The gene (1650-bp) encoding a novel, bi-modular glycoside hydrolase family 64 (GH64) endo-β-1,3-glucanase (GluY) with a ricin-type β-trefoil lectin domain (RICIN)-like domain from Cellulosimicrobium funkei HY-13 was identified and biocatalytically characterized. The recombinant enzyme (rGluY: 57.5 kDa) displayed the highest degradation activity for laminarin at pH 4.5 and 40 °C, while the polysaccharide was maximally decomposed by its C-terminal truncated mutant enzyme (rGluYΔRICIN: 42.0 kDa) at pH 5.5 and 45 °C. The specific activity (26.0 U/mg) of rGluY for laminarin was 2.6-fold higher than that (9.8 U/mg) of rGluYΔRICIN for the same polysaccharide. Moreover, deleting the C-terminal RICIN domain in the intact enzyme caused a significant decrease (>60%) of its ability to degrade β-1,3-d-glucans such as pachyman and curdlan. Biocatalytic degradation of β-1,3-d-glucans by inverting rGluY yielded predominantly d-laminaripentaose. rGluY exhibited stronger growth inhibition against Candida albicans in a dose-dependent manner than rGluYΔRICIN. The degree of growth inhibition of C. albicans by rGluY (approximately 1.8 μM) was approximately 80% of the fungal growth. The superior anti-fungal activity of rGluY suggests that it can potentially be exploited as a supplementary agent in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Lu Bai
- Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea;
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Jonghoon Kim
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Kwang-Hee Son
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Dong-Ha Shin
- Insect Biotech Co. Ltd., Daejeon 34054, Korea; (D.-H.S.); (B.-H.K.)
| | - Bon-Hwan Ku
- Insect Biotech Co. Ltd., Daejeon 34054, Korea; (D.-H.S.); (B.-H.K.)
| | - Do Young Kim
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
- Correspondence: (D.Y.K.); (H.-Y.P.)
| | - Ho-Yong Park
- Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea;
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
- Correspondence: (D.Y.K.); (H.-Y.P.)
| |
Collapse
|