1
|
Lee SY, Weingarten M, Ottenheim C. Current upstream and downstream process strategies for sustainable yeast lipid production. BIORESOURCE TECHNOLOGY 2024; 414:131601. [PMID: 39389381 DOI: 10.1016/j.biortech.2024.131601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
An increasing global population demands more lipids for food and chemicals, but the unsustainable growth of plant-derived lipid production and an unreliable supply of certain lipids due to environmental changes, require new solutions. One promising solution is the use of lipids derived from microbial biomass, particularly oleaginous yeasts. This critical review begins with a description of the most promising yeast lipid replacement targets: palm oil substitute, cocoa butter equivalent, polyunsaturated fatty acid source, and animal fat analogue, emphasizing sustainability aspects. Subsequently, the review focuses on the most recent advances in upstream methodologies, particularly fermentation strategies that promote circularity, such as waste valorisation, co-cultivation and co-product biosynthesis. Downstream processing methods for minimising energy consumption and waste generation, including bioflocculation, energy-efficient and environmentally friendly cell lysis and extraction, and integrated co-product recovery methods, are discussed. Finally, the current challenges are outlined. Integrating these strategies advances sustainable yeast lipid production for high-value applications.
Collapse
Affiliation(s)
- Sze Ying Lee
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Melanie Weingarten
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Christoph Ottenheim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
| |
Collapse
|
2
|
Priyanti I, Wongsawaeng D, Kongprawes G, Ngaosuwan K, Kiatkittipong W, Hosemann P, Sola P, Assabumrungrat S. Enhanced cold plasma hydrogenation with glycerol as hydrogen source for production of trans-fat-free margarine. Sci Rep 2024; 14:18468. [PMID: 39122825 PMCID: PMC11315688 DOI: 10.1038/s41598-024-68729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The quest for better nutritious foods has encouraged novel scientific investigations to find trans-fat reduction methods. This research proposes an innovative approach for the production of healthier trans-fat-free margarine from palm oil by the use of dielectric barrier discharge (DBD) plasma technology with glycerol serving as the principal source of hydrogen. The effectiveness of DBD plasma in hydrogenating palm olein was investigated. By employing a methodical series of experiments and thorough analytical approaches, examination of the saturated fatty acid conversion experienced its iodine value (IV) reduction from 67.16 ± 0.70 to 31.61 ± 1.10 under the optimal process parameters of 1 L min-1 He flow rate, 35 W plasma discharge power, 10 mm gap size, ambient initial temperature, and 12 h reaction time with solid texture. According to the method for producing trans-fat-free margarine in the absence of a catalyst and H2 gas, the hydrogenation rate of the prepared mixture of palm olein-glycerol was remarkably improved; the trans-fat content in the produced product was zero; the efficacy of incorporating cis- and trans-isomerization was lowered, and the method has a promising industrial application prospect.
Collapse
Affiliation(s)
- Ika Priyanti
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathum Wan, Bangkok, 10330, Thailand
| | - Doonyapong Wongsawaeng
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathum Wan, Bangkok, 10330, Thailand.
| | - Grittima Kongprawes
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathum Wan, Bangkok, 10330, Thailand
| | - Kanokwan Ngaosuwan
- Division of Chemical Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Peter Hosemann
- Department of Nuclear Engineering, Faculty of Engineering, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Phachirarat Sola
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, 26120, Thailand
| | - Suttichai Assabumrungrat
- Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Saini R, Tiwari BR, Brancoli P, Taherzadeh MJ, Kaur Brar S. Environmental assessment of Rhodosporidium toruloides-1588 based oil production using wood hydrolysate and crude glycerol. BIORESOURCE TECHNOLOGY 2024; 393:130102. [PMID: 38016584 DOI: 10.1016/j.biortech.2023.130102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Rhodosporidium toruloides, an oleaginous yeast, is a potential feedstock for biodiesel production due to its ability to utilize lignocellulosic biomass-derived hydrolysate with a considerably high lipid titer of 50-70 % w/w. Hence, for the first-time environmental assessment of large-scale R. toruloides-based biodiesel production from wood hydrolysate and crude glycerol was conducted. The global warming potential was observed to be 0.67 kg CO2 eq./MJ along with terrestrial ecotoxicity of 1.37 kg 1,4-DCB eq./MJ and fossil depletion of 0.13 kg oil eq./MJ. The highest impacts for global warming (∼45 %) and fossil depletion (∼37 %) are attributed to the use of chloroform for lipid extraction while fuel consumption for transportation contributed more than 50 % to terrestrial ecotoxicity. Further, sensitivity analysis revealed that maximizing biodiesel yield by increasing lipid yield and solid loading could contribute to reduced environmental impacts. In nutshell, this investigation reveals that environmental impact varies with the type of chemical utilized.
Collapse
Affiliation(s)
- Rahul Saini
- Civil Engineering Department, Lassonde School of Engineering, York University, North York, Ontario M3J 1P3, Canada
| | - Bikash R Tiwari
- INRS-ETE, University of Quebec, 490 Rue de La Couronne, Quebec G1K 9A9, Canada
| | - Pedro Brancoli
- Swedish Centre for Resource Recovery, University of Borås, Borås 501 90, Sweden
| | | | - Satinder Kaur Brar
- Civil Engineering Department, Lassonde School of Engineering, York University, North York, Ontario M3J 1P3, Canada.
| |
Collapse
|
4
|
Use of Pressurized and Airlift Bioreactors for Citric Acid Production by Yarrowia lipolytica from Crude Glycerol. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Citric acid production is generally carried out in an aqueous medium in stirred tank reactors (STR), where the solubility of oxygen is low and the oxygen demand of microbial cultures is high. Thus, for this bioprocess, providing adequate oxygen mass transfer rate (OTR) from the gas phase into the aqueous culture medium is the main challenge of bioreactor selection and operation. In this study, citric acid production by Yarrowia lipolytica W29 from crude glycerol, in batch cultures, was performed in two non-conventional bioreactors normally associated with high mass transfer efficiency: a pressurized STR and an airlift bioreactor. Increased OTR was obtained by raising the total air pressure in the pressurized STR and by increasing the aeration rate in the airlift bioreactor. An improvement of 40% in maximum citric acid titer was obtained by raising the air pressure from 1 bar to 2 bar, whereas, in the airlift bioreactor, a 30% improvement was attained by increasing the aeration rate from 1 vvm to 1.5 vvm. Both bioreactor types can be successfully applied for the citric acid production process using alternative ways of improving OTR than increasing mechanical stirring power input, thus leading to important operating saving costs.
Collapse
|
5
|
Saini R, Osorio-Gonzalez CS, Hegde K, Kaur Brar S, Vezina P. A co-fermentation strategy with wood hydrolysate and crude glycerol to enhance the lipid accumulation in Rhodosporidium toruloides-1588. BIORESOURCE TECHNOLOGY 2022; 364:127821. [PMID: 36007764 DOI: 10.1016/j.biortech.2022.127821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Wood hydrolysate has been regarded as sustainable and renewable substrate to produce microbial lipids, a potential feedstock for the biodiesel industry. Moreover, the major by-product of biofuel industries is crude glycerol but its implementation as a carbon source is still constrained due to the presence of impurities resulting in low biomass production and low lipid titer. Thus, this study investigates the effect of different carbon ratios of hydrolysate and crude glycerol on R. toruloides-1588. Hydrolysate to crude glycerol ratio of 60:40 resulted in maximum lipid accumulation of 49% (w/w), more than 90% of sugars and glycerol consumption. Further, scale-up to bench-scale fermenter resulted in 12% higher lipid accumulation (56.3% w/w, 0.15 g/L∙h) in 50% less time than flask fermentation. Hence, the ability of R. toruloides-1588 to flourish on different carbohydrates and accumulate high lipid content will be beneficial for the further development of biorefinery industries.
Collapse
Affiliation(s)
- Rahul Saini
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Carlos Saul Osorio-Gonzalez
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Krishnamoorthy Hegde
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| | - Pierre Vezina
- Director of Energy and the Environment, Council of the Quebec Forestry Industry, 1175 Avenue Lavigerie Suite 200, Quebec G1V 4P1, Canada
| |
Collapse
|
6
|
Diamantopoulou P, Papanikolaou S. Biotechnological production of sugar-alcohols: focus on Yarrowia lipolytica and edible/medicinal mushrooms. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Lad BC, Coleman SM, Alper HS. Microbial valorization of underutilized and nonconventional waste streams. J Ind Microbiol Biotechnol 2022; 49:kuab056. [PMID: 34529075 PMCID: PMC9118980 DOI: 10.1093/jimb/kuab056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
The growing burden of waste disposal coupled with natural resource scarcity has renewed interest in the remediation, valorization, and/or repurposing of waste. Traditional approaches such as composting, anaerobic digestion, use in fertilizers or animal feed, or incineration for energy production extract very little value out of these waste streams. In contrast, waste valorization into fuels and other biochemicals via microbial fermentation is an area of growing interest. In this review, we discuss microbial valorization of nonconventional, aqueous waste streams such as food processing effluents, wastewater streams, and other industrial wastes. We categorize these waste streams as carbohydrate-rich food wastes, lipid-rich wastes, and other industrial wastes. Recent advances in microbial valorization of these nonconventional waste streams are highlighted, along with a discussion of the specific challenges and opportunities associated with impurities, nitrogen content, toxicity, and low productivity.
Collapse
Affiliation(s)
- Beena C Lad
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St. Stop A5000, Austin, Texas 78712, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, USA
| |
Collapse
|
8
|
Louhasakul Y, Cheirsilp B. Potential use of industrial by-products as promising feedstock for microbial lipid and lipase production and direct transesterification of wet yeast into biodiesel by lipase and acid catalysts. BIORESOURCE TECHNOLOGY 2022; 348:126742. [PMID: 35065222 DOI: 10.1016/j.biortech.2022.126742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 05/06/2023]
Abstract
This work attempted the conversion of crude glycerol to lipid and lipase by Yarrowia lipolytica and the direct transesterification of wet yeast by its lipase into biodiesel via response surface methodology to enhance the cost-effectiveness of biodiesel production from the lipids. The yeast grew better and accumulated a high amount of lipids on the waste combined with fish waste hydrolysate, but only exhibited high lipase activity on the waste supplemented with surfactants (i.e., gum Arabic, Tween 20, Tween 80). However, the combination of both wastes and Tween 80 further improved growth, lipid productivity, and lipase activity. More importantly, lipase-direct transesterification under optimal conditions (wet cell concentration of 17.97 mg-DCW, methanol loading of 8.21 µL, and hexane loading of 10.26 µL) followed by acid-catalyst transesterification (0.4 M H2SO4), offered high FAME yields (>90%), showing the efficiency of the process when applied for the industrialization of biodiesel production from microbial lipids.
Collapse
Affiliation(s)
- Yasmi Louhasakul
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala 95000, Thailand.
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai 90112, Thailand
| |
Collapse
|
9
|
Gottardi D, Siroli L, Vannini L, Patrignani F, Lanciotti R. Recovery and valorization of agri-food wastes and by-products using the non-conventional yeast Yarrowia lipolytica. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Lopes M, Miranda SM, Costa AR, Pereira AS, Belo I. Yarrowia lipolytica as a biorefinery platform for effluents and solid wastes valorization - challenges and opportunities. Crit Rev Biotechnol 2021; 42:163-183. [PMID: 34157916 DOI: 10.1080/07388551.2021.1931016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Due to its physiological and enzymatic features, Yarrowia lipolytica produces several valuable compounds from a wide range of substrates. Appointed by some authors as an industrial workhorse, Y. lipolytica has an extraordinary ability to use unrefined and complex low-cost substrates as carbon and nitrogen sources, aiding to reduce the waste surplus and to produce added-value compounds in a cost-effective way. Dozens of review papers regarding Y. lipolytica have been published till now, proving the interest that this yeast arouses in the scientific community. However, most of them are focused on metabolic pathways involved in substrates assimilation and product formation, or the development of synthetic biology tools in order to obtain engineered strains for biotechnological applications. This paper provides an exhaustive and up-to-date revision on the application of Y. lipolytica to valorize liquid effluents and solid wastes and its role in developing cleaner biotechnological approaches, aiming to boost the circular economy. Firstly, a general overview about Y. lipolytica is introduced, describing its intrinsic features and biotechnological applications. Then, an extensive survey of the literature regarding the assimilation of oily wastes (waste cooking oils, oil cakes and olive mill wastewaters), animal fat wastes, hydrocarbons-rich effluents, crude glycerol and agro-food wastes by Y. lipolytica strains will be discussed. This is the first article that brings together the environmental issue of all such residues and their valorization as feedstock for valuable compounds production by Y. lipolytica. Finally, it will demonstrate the potential of this non-conventional yeast to be used as a biorefinery platform.
Collapse
Affiliation(s)
- Marlene Lopes
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sílvia M Miranda
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana R Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana S Pereira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
11
|
Comparative study on production and characterisation of extracellular polymeric substances (EPS) using activated sludge fortified with crude glycerol from different biodiesel companies. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43393-020-00017-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|