1
|
Zhu FY, Yang Q, Cao M, Zheng K, Zhang XJ, Shen Q, Cai X, Liu ZQ, Zheng YG. Tuning an efficient Escherichia coli whole-cell catalyst expressing l-pantolactone dehydrogenase for the biosynthesis of d-(-)-pantolactone. J Biotechnol 2023; 367:1-10. [PMID: 36948403 DOI: 10.1016/j.jbiotec.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/18/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
d-(-)-Pantolactone (DPL) is a key intermediate for the production of d-(+)-pantothenate (vitamin B5). Deracemization of d,l-pantolactone (D,L-PL) through oxidizing l-(+)-pantolactone (LPL) to ketopantoyl lactone (KPL) and subsequently reducing KPL to DPL is a promising route for synthesizing DPL. Herein, a newly mined l-pantolactone dehydrogenase from Rhodococcus hoagie (RhoLPLDH) was used for the oxidative dehydrogenation of LPL. To alleviate inclusion bodies formed by membrane-bound RhoLPLDH intracellular expression in E. coli, strategies involving chaperone assistance and decreasing induction temperature were used to achieve RhoLPLDH soluble expression. To enhance its activity, directed evolution and hydrophilicity-based engineering yielded increased catalytic activity and thermostability. 1M LPL was efficiently converted to KPL by engineering strain CM5 co-expressing RhoLPLDHL254I/V241I/I156L/F224Q/N164K and chaperone. A "two stages in one-pot" method was employed in deracemization of 1M D,L-PL with 91.2% yield. These results demonstrated that CM5 catalyst exhibits great potential in enzyme cascade deracemization for the production of DPL.
Collapse
Affiliation(s)
- Fang-Ying Zhu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qing Yang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Beijing Tsingke Biotechnology Co., Ltd, Beijing 100176, People's Republic of China
| | - Min Cao
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ken Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiao-Jian Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qi Shen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xue Cai
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
2
|
Sun S, Zhou J, Jiang J, Dai Y, Sheng M. Nitrile Hydratases: From Industrial Application to Acetamiprid and Thiacloprid Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10440-10449. [PMID: 34469128 DOI: 10.1021/acs.jafc.1c03496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The widespread application of neonicotinoid insecticides (NEOs) in agriculture causes a series of environmental and ecological problems. Microbial remediation is a popular approach to relieve these negative impacts, but the associated molecular mechanisms are rarely explored. Nitrile hydratase (NHase), an enzyme commonly used in industry for amide production, was discovered to be responsible for the degradation of acetamiprid (ACE) and thiacloprid (THI) by microbes. Since then, research into NHases in NEO degradation has attracted increasing attention. In this review, microbial degradation of ACE and THI is briefly described. We then focus on NHase evolution, gene composition, maturation mechanisms, expression, and biochemical properties with regard to application of NHases in NEO degradation for bioremediation.
Collapse
Affiliation(s)
- Shilei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jiangsheng Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Miaomiao Sheng
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| |
Collapse
|