1
|
Dinglasan JLN, Otani H, Doering DT, Udwary D, Mouncey NJ. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol 2025; 23:338-354. [PMID: 39824928 DOI: 10.1038/s41579-024-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/20/2025]
Abstract
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Drew T Doering
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Yang J, Song J, Feng Z, Ma Y. Application of CRISPR-Cas9 in microbial cell factories. Biotechnol Lett 2025; 47:46. [PMID: 40259107 DOI: 10.1007/s10529-025-03592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 04/12/2025] [Indexed: 04/23/2025]
Abstract
Metabolically engineered bacterial strains are rapidly emerging as a pivotal focus in the biosynthesis of an array of bio-based ingredients. Presently, CRISPR (clustered regularly interspaced short palindromic repeats) and its associated RNA-guided endonuclease (Cas9) are regarded as the most promising tool, having ushered in a transformative advancement in genome editing. Because of CRISPR-Cas9's accuracy and adaptability, metabolic engineers are now able to create novel regulatory systems, optimize pathways more effectively, and make extensive genome-scale alterations. Nevertheless, there are still obstacles to overcome in the application of CRISPR-Cas9 in novel microorganisms, particularly those industrial microorganism hosts that are resistant to traditional genetic manipulation techniques. How to further extend CRISPR-Cas9 to these microorganisms is an urgent problem to be solved. This article first introduces the mechanism and application of CRISPR-Cas9, and then discusses how to optimize CRISPR-Cas9 as a genome editing tool, including how to reduce off-target effects and how to improve targeting efficiency by optimizing design. Through offering a comprehensive perspective on the revolutionary effects of CRISPR-Cas9 in microbial cell factories, we hope to stimulate additional research and development in this exciting area.
Collapse
Affiliation(s)
- Jinhui Yang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Junyan Song
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zeyu Feng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yunqi Ma
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Virgílio MLDS, Quintela ED, Maciel LHR, Goulart GSS, Silva JFAE, Cortes MVDCB. Metarhizium anisopliae engineering mediated by a CRISPR/Cas9 recyclable system. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01249-5. [PMID: 39982596 DOI: 10.1007/s12223-025-01249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The advent of CRISPR/Cas technology has revolutionized genome editing, offering simplicity, precision, and cost-effectiveness. While its application in biological control fungi has been limited, including the cosmopolitan fungus Metarhizium anisopliae, recent advancements show promise. However, integrating cas9 and selection-marker genes into fungal genomes poses challenges, including reduced efficiency, toxicity, and off-target effects. Besides, marker-free genetic engineering through a CRISPR recyclable system presents a viable solution, enabling efficient mutant generation without compromising fitness and virulence. This study pioneers the construction of marker-free strains of M. anisopliae using a CRISPR/Cas9 recyclable system. Precise deletion of albA and ku70, alongside gfp cassette insertion, confirms the system efficiency. This innovative approach holds significant potential for facilitating in-depth molecular studies, understanding their ecological roles in agricultural systems, and enhancing biocontrol efficacy against insect pests through genetic improvement.
Collapse
Affiliation(s)
| | - Eliane Dias Quintela
- Embrapa Rice & Beans, Brazilian Agricultural Research Corporation, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | | | - Gabriela Souza Silva Goulart
- Embrapa Rice & Beans, Brazilian Agricultural Research Corporation, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | | | | |
Collapse
|
4
|
Patel S, Naik L, Rai A, Palit K, Kumar A, Das M, Nayak DK, Dandsena PK, Mishra A, Singh R, Dhiman R, Das S. Diversity of secondary metabolites from marine Streptomyces with potential anti-tubercular activity: a review. Arch Microbiol 2025; 207:64. [PMID: 39961874 DOI: 10.1007/s00203-024-04233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
The bacterial genus Streptomyces is known for the prolific production of secondary metabolites, which exhibit remarkable structural diversity and potent biological activities. Tuberculosis (TB) remains a formidable global health challenge exacerbated by the emergence of antimicrobial resistance (AMR), necessitating the discovery of novel therapeutic agents. The untapped potential of marine Streptomyces-derived secondary metabolites offers a promising avenue for screening anti-tubercular (anti-TB) compounds with unique chemical structures and potential bioactive properties. The review emphasizes the diverse marine habitats and Streptomyces with novel anti-TB bioactive metabolites. It discusses fermentation and bioprocessing strategies for screening anti-TB drugs. This review also covers the chemical diversity, potency, mechanism of action, and structures of about seventy anti-TB compounds discovered from marine Streptomyces. These compounds span various chemical classes, including quinones, macrolactams, macrolides, phenols, esters, anthracyclines, peptides, glycosides, alkaloids, piperidones, thiolopyrrolones, nucleosides, terpenes, flavonoids, polyketides, and actinomycins. It emphasizes the need to explore marine ecosystems to discover more novel anti-TB natural products.
Collapse
Affiliation(s)
- Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Ankita Rai
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Krishna Palit
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Pramathesh Kumar Dandsena
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad, 121001, Haryana, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
5
|
Wang S, Zeng X, Jiang Y, Wang W, Bai L, Lu Y, Zhang L, Tan GY. Unleashing the potential: type I CRISPR-Cas systems in actinomycetes for genome editing. Nat Prod Rep 2024; 41:1441-1455. [PMID: 38888887 DOI: 10.1039/d4np00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: up to the end of 2023Type I CRISPR-Cas systems are widely distributed, found in over 40% of bacteria and 80% of archaea. Among genome-sequenced actinomycetes (particularly Streptomyces spp.), 45.54% possess type I CRISPR-Cas systems. In comparison to widely used CRISPR systems like Cas9 or Cas12a, these endogenous CRISPR-Cas systems have significant advantages, including better compatibility, wide distribution, and ease of operation (since no exogenous Cas gene delivery is needed). Furthermore, type I CRISPR-Cas systems can simultaneously edit and regulate genes by adjusting the crRNA spacer length. Meanwhile, most actinomycetes are recalcitrant to genetic manipulation, hindering the discovery and engineering of natural products (NPs). The endogenous type I CRISPR-Cas systems in actinomycetes may offer a promising alternative to overcome these barriers. This review summarizes the challenges and recent advances in CRISPR-based genome engineering technologies for actinomycetes. It also presents and discusses how to establish and develop genome editing tools based on type I CRISPR-Cas systems in actinomycetes, with the aim of their future application in gene editing and the discovery of NPs in actinomycetes.
Collapse
Affiliation(s)
- Shuliu Wang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Xiaoqian Zeng
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Yue Jiang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| |
Collapse
|
6
|
Tan LL, Heng E, Leong CY, Ng V, Yang LK, Seow DCS, Koduru L, Kanagasundaram Y, Ng SB, Peh G, Lim YH, Wong FT. Application of Cas12j for Streptomyces Editing. Biomolecules 2024; 14:486. [PMID: 38672502 PMCID: PMC11048056 DOI: 10.3390/biom14040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, CRISPR-Cas toolboxes for Streptomyces editing have rapidly accelerated natural product discovery and engineering. However, Cas efficiencies are oftentimes strain-dependent, and the commonly used Streptococcus pyogenes Cas9 (SpCas9) is notorious for having high levels of off-target toxicity effects. Thus, a variety of Cas proteins is required for greater flexibility of genetic manipulation within a wider range of Streptomyces strains. This study explored the first use of Acidaminococcus sp. Cas12j, a hypercompact Cas12 subfamily, for genome editing in Streptomyces and its potential in activating silent biosynthetic gene clusters (BGCs) to enhance natural product synthesis. While the editing efficiencies of Cas12j were not as high as previously reported efficiencies of Cas12a and Cas9, Cas12j exhibited higher transformation efficiencies compared to SpCas9. Furthermore, Cas12j demonstrated significantly improved editing efficiencies compared to Cas12a in activating BGCs in Streptomyces sp. A34053, a strain wherein both SpCas9 and Cas12a faced limitations in accessing the genome. Overall, this study expanded the repertoire of Cas proteins for genome editing in actinomycetes and highlighted not only the potential of recently characterized Cas12j in Streptomyces but also the importance of having an extensive genetic toolbox for improving the editing success of these beneficial microbes.
Collapse
Affiliation(s)
- Lee Ling Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
| | - Elena Heng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Veronica Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Deborah Chwee San Seow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Guangrong Peh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (Y.H.L.)
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (Y.H.L.)
| | - Fong Tian Wong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (Y.H.L.)
| |
Collapse
|
7
|
Tay DWP, Tan LL, Heng E, Zulkarnain N, Ching KC, Wibowo M, Chin EJ, Tan ZYQ, Leong CY, Ng VWP, Yang LK, Seow DCS, Lim YW, Koh W, Koduru L, Kanagasundaram Y, Ng SB, Lim YH, Wong FT. Exploring a general multi-pronged activation strategy for natural product discovery in Actinomycetes. Commun Biol 2024; 7:50. [PMID: 38184720 PMCID: PMC10771470 DOI: 10.1038/s42003-023-05648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024] Open
Abstract
Natural products possess significant therapeutic potential but remain underutilized despite advances in genomics and bioinformatics. While there are approaches to activate and upregulate natural product biosynthesis in both native and heterologous microbial strains, a comprehensive strategy to elicit production of natural products as well as a generalizable and efficient method to interrogate diverse native strains collection, remains lacking. Here, we explore a flexible and robust integrase-mediated multi-pronged activation approach to reliably perturb and globally trigger antibiotics production in actinobacteria. Across 54 actinobacterial strains, our approach yielded 124 distinct activator-strain combinations which consistently outperform wild type. Our approach expands accessible metabolite space by nearly two-fold and increases selected metabolite yields by up to >200-fold, enabling discovery of Gram-negative bioactivity in tetramic acid analogs. We envision these findings as a gateway towards a more streamlined, accelerated, and scalable strategy to unlock the full potential of Nature's chemical repertoire.
Collapse
Grants
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- C233017006 Agency for Science, Technology and Research (A*STAR)
- C211917003 Agency for Science, Technology and Research (A*STAR)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- C233017006 Agency for Science, Technology and Research (A*STAR)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- National Research Foundation Singapore (National Research Foundation-Prime Minister’s office, Republic of Singapore)
Collapse
Affiliation(s)
- Dillon W P Tay
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Lee Ling Tan
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Elena Heng
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Nadiah Zulkarnain
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Kuan Chieh Ching
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Mario Wibowo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Elaine Jinfeng Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Zann Yi Qi Tan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Veronica Wee Pin Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Deborah C S Seow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Yi Wee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Winston Koh
- Bioinformatics Institute (BII), Agency of Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Republic of Singapore
| | - Lokanand Koduru
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore.
| | - Fong Tian Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore.
| |
Collapse
|
8
|
Parra J, Beaton A, Seipke RF, Wilkinson B, Hutchings MI, Duncan KR. Antibiotics from rare actinomycetes, beyond the genus Streptomyces. Curr Opin Microbiol 2023; 76:102385. [PMID: 37804816 DOI: 10.1016/j.mib.2023.102385] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Throughout the golden age of antibiotic discovery, Streptomyces have been unsurpassed for their ability to produce bioactive metabolites. Yet, this success has been hampered by rediscovery. As we enter a new stage of biodiscovery, omics data and existing scientific repositories can enable informed choices on the biodiversity that may yield novel antibiotics. Here, we focus on the chemical potential of rare actinomycetes, defined as bacteria within the order Actinomycetales, but not belonging to the genus Streptomyces. They are named as such due to their less-frequent isolation under standard laboratory practices, yet there is increasing evidence to suggest these biologically diverse genera harbour considerable biosynthetic and chemical diversity. In this review, we focus on examples of successful isolation and genera that have been the focus of more concentrated biodiscovery efforts, we survey the representation of rare actinomycete taxa, compared with Streptomyces, across natural product data repositories in addition to its biosynthetic potential. This is followed by an overview of clinically useful drugs produced by rare actinomycetes and considerations for future biodiscovery efforts. There is much to learn about these underexplored taxa, and mounting evidence suggests that they are a fruitful avenue for the discovery of novel antimicrobials.
Collapse
Affiliation(s)
- Jonathan Parra
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Ainsley Beaton
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ryan F Seipke
- University of Leeds, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, Leeds LS2 9JT, UK
| | - Barrie Wilkinson
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew I Hutchings
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Katherine R Duncan
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, 141 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
9
|
Heng E, Lim YW, Leong CY, Ng VWP, Ng SB, Lim YH, Wong FT. Enhancing armeniaspirols production through multi-level engineering of a native Streptomyces producer. Microb Cell Fact 2023; 22:84. [PMID: 37118806 PMCID: PMC10142417 DOI: 10.1186/s12934-023-02092-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Nature has provided unique molecular scaffolds for applications including therapeutics, agriculture, and food. Due to differences in ecological environments and laboratory conditions, engineering is often necessary to uncover and utilize the chemical diversity. Although we can efficiently activate and mine these often complex 3D molecules, sufficient production of target molecules for further engineering and application remain a considerable bottleneck. An example of these bioactive scaffolds is armeniaspirols, which are potent polyketide antibiotics against gram-positive pathogens and multi-resistance gram-negative Helicobacter pylori. Here, we examine the upregulation of armeniaspirols in an alternative Streptomyces producer, Streptomyces sp. A793. RESULTS Through an incidental observation of enhanced yields with the removal of a competing polyketide cluster, we observed seven-fold improvement in armeniaspirol production. To further investigate the improvement of armeniaspirol production, we examine upregulation of armeniaspirols through engineering of biosynthetic pathways and primary metabolism; including perturbation of genes in biosynthetic gene clusters and regulation of triacylglycerols pool. CONCLUSION With either overexpression of extender unit pathway or late-stage N-methylation, or the deletion of a competing polyketide cluster, we can achieve seven-fold to forty nine-fold upregulation of armeniaspirol production. The most significant upregulation was achieved by expression of heterologous fatty acyl-CoA synthase, where we observed not only a ninety seven-fold increase in production yields compared to wild type, but also an increase in the diversity of observed armeniaspirol intermediates and analogs.
Collapse
Affiliation(s)
- Elena Heng
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Singapore
| | - Yi Wee Lim
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 2, Nanos, Singapore, 138669, Singapore
| | - Veronica W P Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 2, Nanos, Singapore, 138669, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 2, Nanos, Singapore, 138669, Singapore
| | - Yee Hwee Lim
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore.
| | - Fong Tian Wong
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Singapore.
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore.
| |
Collapse
|
10
|
Establishment of a visual gene knockout system based on CRISPR/Cas9 for the rare actinomycete Nonomuraea gerenzanensis. Biotechnol Lett 2023; 45:401-410. [PMID: 36650342 DOI: 10.1007/s10529-023-03347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To develop a modified CRISPR/Cas9 system with the β-glucuronidase (GusA) reporter and a dual sgRNA cassette for Nonomuraea gerenzanensis (N. gerenzanensis). RESULTS With the aid of a visual GusA reporter, the complicated and tedious process of cloning and gene identification could be abandoned entirely in the genetic editing of N. gerenzanensis. Moreover, introducing a dual sgRNA cassette into the CRISPR/Cas9 system significantly improved gene deletion efficiency compared to the single sgRNA element. Furthermore, the length of the homologous flanking sequences set to the lowest value of 500 bp in this system could still reach the relatively higher conjugation transfer frequency. CONCLUSIONS The enhanced CRISPR/Cas9 system could efficiently perform genetic manipulation on the rare actinomycete N. gerenzanensis.
Collapse
|