1
|
Wang F, Fu Q, Tang T, Liu Z, Ma X, Liu Y, Zhao M, Wang C, Du J, Wang B, Shi X. Dynamic changes in microbiota and metabolome of Kazakh cheese under traditional handicraft. Food Chem 2025; 483:144251. [PMID: 40222124 DOI: 10.1016/j.foodchem.2025.144251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/17/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Kazakh cheese is a traditional fermented dairy product. In this study, high-throughput sequencing, HS-SPME-GC-MS/MS, and untargeted metabolomics were employed to investigate the microbial succession and flavor profiles of Kazakh cheese under traditional handicraft. During processing, Lactobacillus and Acetobacter were the dominant bacterial genera, while Pichia and Kluyveromyces were the predominant yeast genera. The predominant volatile compounds identified across different stages were phenethyl alcohol, acetoin, hexanoic acid, and phenethyl acetate, with their maximum concentrations attained at the cheese during ripening (CR) stage. KEGG pathway enrichment analysis identified amino acid metabolism as the most significantly enriched pathway. Furthermore, Spearman correlation analysis revealed a significant association between Pichia, Lactobacillus, Lactococcus, Kluyveromyces, and flavor compounds, suggesting the crucial role of these microbes in flavor development. This study provides a theoretical foundation for enhancing the quality of traditional fermented Kazakh cheese and advancing Xinjiang's specialty dairy industry.
Collapse
Affiliation(s)
- Fangfang Wang
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Qingquan Fu
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Tiantian Tang
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Zimeng Liu
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xinyi Ma
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yinqi Liu
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Min Zhao
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Chenqiang Wang
- Guannong Testing Technology Co., Ltd, Tiemenguan 841007, Xinjiang, China
| | - Juan Du
- Xinjiang Sailimu Modern Agriculture Co., Ltd, Shuanghe 833408, Xinjiang, China
| | - Bin Wang
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Xuewei Shi
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
2
|
Aguiar RAC, Ferreira FA, Rubio Cieza MY, Silva NCC, Miotto M, Carvalho MM, Bazzo BR, Botelho LAB, Dias RS, De Dea Lindner J. Staphylococcus aureus Isolated From Traditional Artisanal Raw Milk Cheese from Southern Brazil: Diversity, Virulence, and Antimicrobial Resistance Profile. J Food Prot 2024; 87:100285. [PMID: 38697483 DOI: 10.1016/j.jfp.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Staphylococcus aureus is one of the primary pathogenic agents found in cheeses produced with raw milk. Some strains of S. aureus are enterotoxigenic, possessing the ability to produce toxins responsible for staphylococcal food poisoning when present in contaminated foods. This study aimed to genotypically characterize, assess the antimicrobial resistance profile, and examine the enterotoxigenic potential of strains of S. aureus isolated from artisanal colonial cheese. Additionally, a bacterial diversity assessment in the cheeses was conducted by sequencing the 16S rRNA gene. The metataxomic profile revealed the presence of 68 distinct species in the cheese samples. Fifty-seven isolates of S. aureus were identified, with highlighted resistance to penicillin in 33% of the isolates, followed by clindamycin (28%), erythromycin (26%), and tetracycline (23%). The evaluated strains also exhibited inducible resistance to clindamycin, with nine isolates considered multidrug-resistant (MDR). The agr type I was the most prevalent (62%) among the isolates, followed by agr type II (24%). Additionally, ten spa types were identified. Although no enterotoxins and their associated genes were detected in the samples and isolates, respectively, the Panton-Valentine leukocidin gene (lukS-lukF) was found in 39% of the isolates. The presence of MDR pathogens in the artisanal raw milk cheese production chain underscores the need for quality management to prevent the contamination and dissemination of S. aureus strains.
Collapse
Affiliation(s)
- Renata Amanda Carneiro Aguiar
- Food Technology and Bioprocesses Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), 88034-001 Florianópolis, SC, Brazil
| | | | - Mirian Yuliza Rubio Cieza
- Department of Food Science and Nutrition, School of Food Engineering (FEA), State University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Science and Nutrition, School of Food Engineering (FEA), State University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Marília Miotto
- Food Technology and Bioprocesses Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), 88034-001 Florianópolis, SC, Brazil
| | - Michelle M Carvalho
- Food Technology and Bioprocesses Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), 88034-001 Florianópolis, SC, Brazil
| | | | | | - Ricardo Souza Dias
- Ezequiel Dias Foundation (FUNED), Enterotoxins Laboratory, Public Health Center of the State of Minas Gerais, 30510-010 Belo Horizonte, MG, Brazil
| | - Juliano De Dea Lindner
- Food Technology and Bioprocesses Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Hu X, Liu S, Li E. Microbial community succession and its correlation with the dynamics of flavor compound profiles in naturally fermented stinky sufu. Food Chem 2023; 427:136742. [PMID: 37393638 DOI: 10.1016/j.foodchem.2023.136742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Wuhan stinky sufu is a traditional fermented soybean product with a short ripening period and unique flavor. The aim of this study was to explore the characteristic flavor compounds and core functional microbiota of naturally fermented Wuhan stinky sufu. The results indicated that 11 volatile compounds including guaiacol, 2-pentylfuran, dimethyl trisulfide, dimethyl disulfide, acetoin, 1-octen-3-ol, (2E)-2-nonenal, indole, propyl 2-methylbutyrate, ethyl 4-methylvalerate, nonanal were characteristic aroma compounds, and 6 free amino acids (Ser, Lys, Arg, Glu, Met and Pro) were identified as taste-contributing compounds. 4 fungal genera (Kodamaea, unclassified_Dipodascaceae, Geotrichum, Trichosporon), and 9 bacterial genera (Lysinibacillus, Enterococcus, Acidipropionibacterium, Bifidobacterium, Corynebacterium, Lactococcus, Pseudomonas, Enterobacter, and Acinetobacter) were identified as the core functional microbiota with positive effects on the production of flavor compounds. These findings would enhance the understanding of core flavor-producing microorganisms in naturally fermented soybean products and potentially provide guidance for enhancing the quality of sufu.
Collapse
Affiliation(s)
- Xuefen Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shaoquan Liu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117543, Singapore
| | - Erhu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
4
|
Martin JGP, Cotter PD. Filamentous fungi in artisanal cheeses: A problem to be avoided or a market opportunity? Heliyon 2023; 9:e15110. [PMID: 37151695 PMCID: PMC10161367 DOI: 10.1016/j.heliyon.2023.e15110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The microbial diversity of artisanal cheeses has been ever more extensively explored over recent years. Many new studies have been particularly focused on the detection and identification of fungi associated with cheese rinds. This is not surprising given that the composition and abundance of fungi on the cheese surface can significantly contribute to desirable sensory qualities, while also contributing to defects, particularly during ripening, and risks associated with the production of mycotoxins. Here we critically review the impact of fungi on the quality of artisanal cheeses, as well as the risks associated with the presence of particular species or strains with specific phenotypes. Ultimately, we address the question; should fungi be predominantly considered villains when it comes to artisanal cheese safety or could their presence be better exploited by producers in order to generate innovative products with greater added value? Such discussions will be increasingly important from the perspective of the future commercialization and regulation of artisanal cheeses that frequently contain a high abundance of moulds.
Collapse
Affiliation(s)
- José Guilherme Prado Martin
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Corresponding author.
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland and VistaMilk, Ireland
| |
Collapse
|
5
|
Coelho MC, Malcata FX, Silva CCG. Distinct Bacterial Communities in São Jorge Cheese with Protected Designation of Origin (PDO). Foods 2023; 12:foods12050990. [PMID: 36900508 PMCID: PMC10000650 DOI: 10.3390/foods12050990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
São Jorge cheese is an iconic product of the Azores, produced from raw cow's milk and natural whey starter (NWS). Although it is produced according to Protected Designation of Origin (PDO) specifications, the granting of the PDO label depends crucially on sensory evaluation by trained tasters. The aim of this work was to characterize the bacterial diversity of this cheese using next-generation sequencing (NGS) and to identify the specific microbiota that contributes most to its uniqueness as a PDO by distinguishing the bacterial communities of PDO and non-PDO cheeses. The NWS and curd microbiota was dominated by Streptococcus and Lactococcus, whereas Lactobacillus and Leuconostoc were also present in the core microbiota of the cheese along with these genera. Significant differences (p < 0.05) in bacterial community composition were found between PDO cheese and non-certified cheese; Leuconostoc was found to play the chief role in this regard. Certified cheeses were richer in Leuconostoc, Lactobacillus and Enterococcus, but had fewer Streptococcus (p < 0.05). A negative correlation was found between contaminating bacteria, e.g., Staphylococcus and Acinetobacter, and the development of PDO-associated bacteria such as Leuconostoc, Lactobacillus and Enterococcus. A reduction in contaminating bacteria was found to be crucial for the development of a bacterial community rich in Leuconostoc and Lactobacillus, thus justifying the PDO seal of quality. This study has helped to clearly distinguish between cheeses with and without PDO based on the composition of the bacterial community. The characterization of the NWS and the cheese microbiota can contribute to a better understanding of the microbial dynamics of this traditional PDO cheese and can help producers interested in maintaining the identity and quality of São Jorge PDO cheese.
Collapse
Affiliation(s)
- Márcia C. Coelho
- School of Agrarian and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Oporto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Oporto, Portugal
| | - Célia C. G. Silva
- School of Agrarian and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Correspondence:
| |
Collapse
|
6
|
Yang G, Xu J, Xu Y, Li R, Wang S. Analysis of Dynamics and Diversity of Microbial Community during Production of Germinated Brown Rice. Foods 2023; 12:foods12040755. [PMID: 36832830 PMCID: PMC9956166 DOI: 10.3390/foods12040755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Sprouts may be contaminated with different pathogenic and spoilage microorganisms, which lead far too easily to foodborne outbreaks. The elucidations of microbial profiles in germinated brown rice (BR) are important, but the changes in the microbial composition during germination are unknown. This study aimed to investigate the microbiota composition and to monitor the dominant microbial dynamics in BR during germination using both culture-independent and -dependent methods. BR samples (HLJ2 and HN) were collected from each stage of the germination processing. The populations of microbes (total viable counts, yeast/mold counts, Bacillus cereus, and Enterobacteriaceae) of two BR cultivars increased markedly with the prolongation of the germination time. High-throughput sequencing (HTS) showed that the germination process significantly influenced the microbial composition and reduced the microbial diversity. Similar microbial communities were observed between the HLJ2 and the HN samples, but with different microbial richness. The bacterial and fungal alpha diversity achieved the maximum for ungerminated samples and declined significantly after soaking and germination. During germination, Pantoea, Bacillus, and Cronobacter were the dominant bacterial genera, but Aspergillus, Rhizopus, and Coniothyrium dominated for the fungi in the BR samples. The predominance of harmful and spoilage microorganisms in BR during germination is mainly from contaminated seeds, which highlights the potential risk of foodborne illness from sprouted BR products. The results provide new insight into the microbiome dynamics of BR and may help to establish effective decontamination measures against pathogenic microorganisms during sprout production.
Collapse
Affiliation(s)
- Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Xianyang 712100, China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering, Northwest A & F University, Xianyang 712100, China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering, Northwest A & F University, Xianyang 712100, China
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A & F University, Xianyang 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Xianyang 712100, China
- Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA
- Correspondence: ; Tel.: +86-29-87092391; Fax: +86-29-87091737
| |
Collapse
|
7
|
Microbiological, morpho-textural, and volatile characterization of Portuguese Queijo de Nisa PDO cheese. Food Res Int 2022; 162:112011. [DOI: 10.1016/j.foodres.2022.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
8
|
Santamarina-García G, Amores G, López de Armentia E, Hernández I, Virto M. Relationship between the Dynamics of Gross Composition, Free Fatty Acids and Biogenic Amines, and Microbial Shifts during the Ripening of Raw Ewe Milk-Derived Idiazabal Cheese. Animals (Basel) 2022; 12:3224. [PMID: 36428451 PMCID: PMC9686631 DOI: 10.3390/ani12223224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
This study reports for the first time the relationship between bacterial succession, characterized by high-throughput sequencing (sequencing of V3-V4 16S rRNA regions), and the evolution of gross composition, free fatty acids (FFAs) and biogenic amines (BAs) during cheese ripening. Specifically, Idiazabal PDO cheese, a raw ewe milk-derived semi-hard o hard cheese, was analysed. Altogether, 8 gross parameters were monitored (pH, dry matter, protein, fat, Ca, Mg, P and NaCl) and 21 FFAs and 8 BAs were detected. The ripening time influenced the concentration of most physico-chemical parameters, whereas the producer mainly affected the gross composition and FFAs. Through an O2PLS approach, the non-starter lactic acid bacteria Lactobacillus, Enterococcus and Streptococcus were reported as positively related to the evolution of gross composition and FFAs release, while only Lactobacillus was positively related to BAs production. Several environmental or non-desirable bacteria showed negative correlations, which could indicate the negative impact of gross composition on their growth, the antimicrobial effect of FFAs and/or the metabolic use of FFAs by these genera, and their ability to degrade BAs. Nonetheless, Obesumbacterium and Chromohalobacter were positively associated with the synthesis of FFAs and BAs, respectively. This research work provides novel information that may contribute to the understanding of possible functional relationships between bacterial communities and the evolution of several cheese quality and safety parameters.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | | | | | | |
Collapse
|
9
|
Kang J, Yin Z, Pei F, Ye Z, Song G, Ling H, Gao D, Jiang X, Zhang C, Ge J. Aerobic composting of chicken manure with penicillin G: Community classification and quorum sensing mediating its contribution to humification. BIORESOURCE TECHNOLOGY 2022; 352:127097. [PMID: 35367602 DOI: 10.1016/j.biortech.2022.127097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Chicken manure containing antibiotics is a hazardous biological waste. The purpose of our study was to investigate how different concentrations of penicillin G alter the bacterial community to affect humification during aerobic composting of chicken manure. The effect of quorum sensing on the bacterial community was also evaluated. Penicillin G mainly affects low fold changes (within 4) for low-abundance (within 200) microbial genera. We found that the bacterial community cooperated to regulate humus and humic acid synthesis. The microbial genera that make up the bacterial community are different, but each bacterial community may have the same ecological function. Quorum sensing affects humic acid synthesis by regulating carbohydrate metabolism and amino acid metabolism in bacterial communities through mechanisms such as the pentose phosphate pathway and the shikimate pathway. This work presents an understanding of the impact of quorum sensing on the collaboration between bacterial communities during composting.
Collapse
Affiliation(s)
- Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ziliang Yin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zeming Ye
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dongni Gao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xueyong Jiang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Chi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|