1
|
Arslan NP, Azad F, Orak T, Budak-Savas A, Ortucu S, Dawar P, Baltaci MO, Ozkan H, Esim N, Taskin M. A review on bacteria-derived antioxidant metabolites: their production, purification, characterization, potential applications, and limitations. Arch Pharm Res 2025:10.1007/s12272-025-01541-5. [PMID: 40208553 DOI: 10.1007/s12272-025-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Antioxidants are organic molecules that scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS), thereby maintaining cellular redox balance in living organisms. The human body synthesizes endogenous antioxidants, whereas humans obtain exogenous antioxidants from other organisms such as plants, animals, fungi, and bacteria. This review primarily focuses on the antioxidant potential of natural metabolites and extracts from five major bacterial phyla, including the well-studied Actinobacteria and Cyanobacteria, as well as less-studied Bacteroides, Firmicutes, and Proteobacteria. The literature survey revealed that the metabolites and the extracts with antioxidant activity can be obtained from bacterial cells and their culture supernatants. The metabolites with antioxidant activity include pigments, phycobiliproteins, polysaccharides, mycosporins-like amino acids, peptides, phenolic compounds, and alkaloids. Both metabolites and extracts demonstrate in vitro antioxidant capacity through radical-scavenging, metal-reducing, and metal-chelating activity assays. In in vivo models, they can scavenge ROS and RNS directly and/or indirectly eliminate them by enhancing the activities of antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase. Due to their antioxidant activities, they may find applications in the cosmetic industry as anti-aging agents for the skin and in medicine as drugs or supplements for combating oxidative stress-related disorders, such as neurodegenerative diseases and diabetes. The literature survey also elucidated that some metabolites and extracts with antioxidant activity also exhibited strong antimicrobial properties. Therefore, we consider that they may have future applications in the treatment of infectious diseases, the preparation of pathogen-free healthy foods, and the extension of food shelf life.
Collapse
Affiliation(s)
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Aysenur Budak-Savas
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Ortucu
- Department of Molecular Biology and Genetics, Science Faculty, Erzurum Technical University, Erzurum, Turkey
| | - Pranav Dawar
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Hakan Ozkan
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
2
|
Liang J, Guo P, Zhang X, Li Z, Zhou M, Ding Y, Ye S. Isolation of endophytes from Taxus cuspidata cv. Nana, preparation of extracellular polysaccharides and study on their functional properties. Int J Biol Macromol 2025; 309:142494. [PMID: 40164249 DOI: 10.1016/j.ijbiomac.2025.142494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
In this study, the target strain Methylorubrum sp. Y19 was isolated and purified from Taxus cuspidata cv. Nana, leading to the preparation of extracellular polysaccharides (EPS) EPSY19. Additionally, polysaccharide TPS0.2 was isolated and purified from the leaves of T. cuspidata cv. Nana. The structures of EPSY19 and TPS0.2 were characterized using high-performance liquid chromatography (HPLC), Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and X-ray diffraction. EPSY19 had a molecular weight of 12.6 kDa, predominantly composed of β-glycosidic linkages, with a molar ratio of monosaccharides: 21.83:3.12:5.58:5.09:26.87:9.98:1:3.92 (Man, Rha, GlcA, GalA, Glc, Gal, Xyl, Ara). In contrast, TPS0.2, with a molecular weight of 289 kDa, exhibited both α- and β-glycosidic linkages, in a ratio of 1:1.13:5.45:11.29:3.57:3.58:3.60. Both polysaccharides were identified as acidic and low-crystallinity. In vitro assays revealed that EPSY19 and TPS0.2 displayed significant antioxidant and α-glucosidase inhibitory activities. Cellular experiments showed EPSY19 and TPS0.2 inhibited excessive apoptosis and oxidative stress in Caco-2 cells, hinting at their potential as natural antioxidants and functional food ingredients. This research presents a novel strategy for the sustainable production of polysaccharides.
Collapse
Affiliation(s)
- Junbo Liang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control,Dalian Polytechnic University, Dalian, China
| | - Pengfei Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control,Dalian Polytechnic University, Dalian, China
| | - Xiaohan Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control,Dalian Polytechnic University, Dalian, China
| | - Zilong Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control,Dalian Polytechnic University, Dalian, China
| | - Mo Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control,Dalian Polytechnic University, Dalian, China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control,Dalian Polytechnic University, Dalian, China
| | - Shuhong Ye
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control,Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
3
|
Zhang D, Zhang X, Shen F, Ding Y, Wang J, Cui Y, Ye S. Preparation and functional characteristics of protein from Ginkgo endophytic Pseudomonas R6 and Ginkgo seed. Int J Biol Macromol 2023; 253:127063. [PMID: 37748587 DOI: 10.1016/j.ijbiomac.2023.127063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Ginkgo seed protein (GSP) has excellent processing characteristics and antioxidant properties. In this study, Gingko endophytic protein (GEP) was synthesized by Ginkgo endophytic Pseudomonas R6. SDS-PAGE analysis indicated that the molecular weights of GSP and GEP were mainly distributed at 17 KDa and 48 KDa, respectively. FTIR showed that GEP and GSP exhibited characteristic absorption in the amide I, II, and III bands, and absorption in amide A and B indicated the presence of hydrogen bonding. HPLC analysis showed that both proteins had 17 amino acids, but their relative abundance was different, with GSP having the highest Ser content (74.713 mg/g) and GEP having the highest Val content (35.905 mg/g). Stomata were observed on the surface of both proteins by SEM, and there were lamellar and some spherical structures on GEP, while the opposite was observed on GSP. GEP had superior solubility, OHC, FC and EC, while GSP showed good WHC. Both proteins exhibited antioxidant activities, with GSP exhibiting stronger hydroxyl radical scavenging ability than GEP, with IC50 of 0.46 mg/mL and 1.54 mg/mL, respectively. This work demonstrates the antioxidant potential of GEP as an alternative to GSP in the food industry.
Collapse
Affiliation(s)
- Dong Zhang
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Xiaohan Zhang
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Fengjun Shen
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Yan Ding
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Jing Wang
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Yanping Cui
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Shuhong Ye
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| |
Collapse
|
4
|
Yang H, Meng H, Xie L, Huang Z. Contribution of Quercetin to the Composition and Antioxidant Properties of Monascus Exopolysaccharides. Foods 2023; 12:foods12051004. [PMID: 36900521 PMCID: PMC10001060 DOI: 10.3390/foods12051004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Exopolysaccharides are important metabolites of Monascus with healthy activities. However, the low production level limits their applications. Hence, the aim of this work was to increase the yield of exopolysaccharides (EPS) and optimize liquid fermentation by adding flavonoids. The EPS yield was optimized via both medium composition and culture conditions. The optional fermentation conditions achieved for EPS production of 7.018 g/L were 50 g/L sucrose, 3.5 g/L yeast extract, 1.0 g/L MgSO4·7H2O, 0.9 g/L KH2PO4, 1.8 g/L K2HPO4·3H2O, 1 g/L quercetin, and 2 mL/L Tween-80, with pH 5.5, inoculum size 9%, seed age 52 h, shaking speed 180 rpm, and fermentation culture 100 h, respectively. Furthermore, the addition of quercetin increased EPS production by 11.66%. The results also showed little citrinin residue in the EPS. The exopolysaccharides' composition and antioxidant capacity of quercetin-modified exopolysaccharides were then preliminarily investigated. The addition of quercetin changed the composition of the exopolysaccharides and the molecular weight (Mw). In addition, the antioxidant activity of Monascus exopolysaccharides was monitored using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS+), and -OH. Monascus exopolysaccharides have good scavenging ability of DPPH and -OH. Furthermore, quercetin increased the scavenging ABTS+ ability. Overall, these findings provide a potential rationale for the application of quercetin in improving the EPS yield.
Collapse
Affiliation(s)
- Haiyun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hui Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Correspondence:
| |
Collapse
|
5
|
Li F, Hu X, Sun X, Li H, Lu J, Li Y, Bao M. Effect of fermentation pH on the structure, rheological properties, and antioxidant activities of exopolysaccharides produced by Alteromonas australica QD. Glycoconj J 2022; 39:773-787. [PMID: 36367683 DOI: 10.1007/s10719-022-10087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
The pH value was essential for the growth and metabolism of microorganisms. Acidic pH exopolysaccharide (AC-EPS) and alkaline pH exopolysaccharide (AL-EPS) secreted by A. australica QD mediated by pH were studied in this paper. The total carbohydrate content and molecular weight of AC-EPS (79.59% ± 2.24% (w/w), 8.374 × 105 Da) and AL-EPS (82.48% ± 1.46% (w/w), 6.182 × 105 Da) were estimated and compared. In AC-EPS, mannose (3.78%) and galactose (3.24%) content was more, while the proportion of glucuronic acid was less in comparison to AL-EPS. The scanning electron microscopy revealed the structural differences among the AC-EPS and AL-EPS. Thermogravimetric analysis showed degradation temperatures of 272.8 °C and 244.9 °C for AC-EPS and AL-EPS, respectively. AC-EPS was found to exhibit better rheological properties and emulsifying capabilities, while AL-EPS had superior antioxidant activities. Overall, both AC-EPS and AL-EPS have the potential to be used as emulsifiers and biological antioxidants.
Collapse
Affiliation(s)
- Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China. .,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
6
|
Potential Applications of an Exopolysaccharide Produced by Bacillus xiamenensis RT6 Isolated from an Acidic Environment. Polymers (Basel) 2022; 14:polym14183918. [PMID: 36146061 PMCID: PMC9505781 DOI: 10.3390/polym14183918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The Bacillus xiamenensis RT6 strain was isolated and identified by morphological, biochemical and molecular tests from an extreme acidic environment, Rio Tinto (Huelva). Optimisation tests for exopolysaccharide (EPS) production in different culture media determined that the best medium was a minimal medium with glucose as the only carbon source. The exopolymer (EPSt) produced by the strain was isolated and characterised using different techniques (GC-MS, HPLC/MSMS, ATR-FTIR, TGA, DSC). The molecular weight of EPSt was estimated. The results showed that the average molecular weight of EPSt was approximately 2.71 × 104 Da and was made up of a heteropolysaccharide composed of glucose (60%), mannose (20%) and galactose (20%). The EPSt showed antioxidant capabilities that significantly improved cell viability. Metal chelation determined that EPSt could reduce the concentration of transition metals such as iron at the highest concentrations tested. Finally, the emulsification study showed that EPSt was able to emulsify different natural polysaccharide oils, reaching up to an 80% efficiency (olive and sesame oil), and was a good candidate for the substitution of the most polluting emulsifiers. The EPSt was found to be suitable for pharmaceutical and industrial applications.
Collapse
|