1
|
Waymont JMJ, Valdés Hernández MDC, Bernal J, Duarte Coello R, Brown R, Chappell FM, Ballerini L, Wardlaw JM. Systematic review and meta-analysis of automated methods for quantifying enlarged perivascular spaces in the brain. Neuroimage 2024; 297:120685. [PMID: 38914212 DOI: 10.1016/j.neuroimage.2024.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Research into magnetic resonance imaging (MRI)-visible perivascular spaces (PVS) has recently increased, as results from studies in different diseases and populations are cementing their association with sleep, disease phenotypes, and overall health indicators. With the establishment of worldwide consortia and the availability of large databases, computational methods that allow to automatically process all this wealth of information are becoming increasingly relevant. Several computational approaches have been proposed to assess PVS from MRI, and efforts have been made to summarise and appraise the most widely applied ones. We systematically reviewed and meta-analysed all publications available up to September 2023 describing the development, improvement, or application of computational PVS quantification methods from MRI. We analysed 67 approaches and 60 applications of their implementation, from 112 publications. The two most widely applied were the use of a morphological filter to enhance PVS-like structures, with Frangi being the choice preferred by most, and the use of a U-Net configuration with or without residual connections. Older adults or population studies comprising adults from 18 years old onwards were, overall, more frequent than studies using clinical samples. PVS were mainly assessed from T2-weighted MRI acquired in 1.5T and/or 3T scanners, although combinations using it with T1-weighted and FLAIR images were also abundant. Common associations researched included age, sex, hypertension, diabetes, white matter hyperintensities, sleep and cognition, with occupation-related, ethnicity, and genetic/hereditable traits being also explored. Despite promising improvements to overcome barriers such as noise and differentiation from other confounds, a need for joined efforts for a wider testing and increasing availability of the most promising methods is now paramount.
Collapse
Affiliation(s)
- Jennifer M J Waymont
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK.
| | - José Bernal
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK; German Centre for Neurodegenerative Diseases (DZNE), Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | | | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| |
Collapse
|
2
|
Reliability of an automatic classifier for brain enlarged perivascular spaces burden and comparison with human performance. Clin Sci (Lond) 2017; 131:1465-1481. [PMID: 28468952 DOI: 10.1042/cs20170051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023]
Abstract
In the brain, enlarged perivascular spaces (PVS) relate to cerebral small vessel disease (SVD), poor cognition, inflammation and hypertension. We propose a fully automatic scheme that uses a support vector machine (SVM) to classify the burden of PVS in the basal ganglia (BG) region as low or high. We assess the performance of three different types of descriptors extracted from the BG region in T2-weighted MRI images: (i) statistics obtained from Wavelet transform's coefficients, (ii) local binary patterns and (iii) bag of visual words (BoW) based descriptors characterizing local keypoints obtained from a dense grid with the scale-invariant feature transform (SIFT) characteristics. When the latter were used, the SVM classifier achieved the best accuracy (81.16%). The output from the classifier using the BoW descriptors was compared with visual ratings done by an experienced neuroradiologist (Observer 1) and by a trained image analyst (Observer 2). The agreement and cross-correlation between the classifier and Observer 2 (κ = 0.67 (0.58-0.76)) were slightly higher than between the classifier and Observer 1 (κ = 0.62 (0.53-0.72)) and comparable between both the observers (κ = 0.68 (0.61-0.75)). Finally, three logistic regression models using clinical variables as independent variable and each of the PVS ratings as dependent variable were built to assess how clinically meaningful were the predictions of the classifier. The goodness-of-fit of the model for the classifier was good (area under the curve (AUC) values: 0.93 (model 1), 0.90 (model 2) and 0.92 (model 3)) and slightly better (i.e. AUC values: 0.02 units higher) than that of the model for Observer 2. These results suggest that, although it can be improved, an automatic classifier to assess PVS burden from brain MRI can provide clinically meaningful results close to those from a trained observer.
Collapse
|