1
|
Hao M, Xue L, Wen X, Sun L, Zhang L, Xing K, Hu X, Xu J, Xing D. Advancing bone regeneration: Unveiling the potential of 3D cell models in the evaluation of bone regenerative materials. Acta Biomater 2024; 183:1-29. [PMID: 38815683 DOI: 10.1016/j.actbio.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Bone, a rigid yet regenerative tissue, has garnered extensive attention for its impressive healing abilities. Despite advancements in understanding bone repair and creating treatments for bone injuries, handling nonunions and large defects remains a major challenge in orthopedics. The rise of bone regenerative materials is transforming the approach to bone repair, offering innovative solutions for nonunions and significant defects, and thus reshaping orthopedic care. Evaluating these materials effectively is key to advancing bone tissue regeneration, especially in difficult healing scenarios, making it a critical research area. Traditional evaluation methods, including two-dimensional cell models and animal models, have limitations in predicting accurately. This has led to exploring alternative methods, like 3D cell models, which provide fresh perspectives for assessing bone materials' regenerative potential. This paper discusses various techniques for constructing 3D cell models, their pros and cons, and crucial factors to consider when using these models to evaluate bone regenerative materials. We also highlight the significance of 3D cell models in the in vitro assessments of these materials, discuss their current drawbacks and limitations, and suggest future research directions. STATEMENT OF SIGNIFICANCE: This work addresses the challenge of evaluating bone regenerative materials (BRMs) crucial for bone tissue engineering. It explores the emerging role of 3D cell models as superior alternatives to traditional methods for assessing these materials. By dissecting the construction, key factors of evaluating, advantages, limitations, and practical considerations of 3D cell models, the paper elucidates their significance in overcoming current evaluation method shortcomings. It highlights how these models offer a more physiologically relevant and ethically preferable platform for the precise assessment of BRMs. This contribution is particularly significant for "Acta Biomaterialia" readership, as it not only synthesizes current knowledge but also propels the discourse forward in the search for advanced solutions in bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Linyuan Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Li Sun
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester M139PL, UK
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao 26600, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Kazimierczak P, Kalisz G, Sroka-Bartnicka A, Przekora A. Effectiveness of the production of tissue-engineered living bone graft: a comparative study using perfusion and rotating bioreactor systems. Sci Rep 2023; 13:13737. [PMID: 37612367 PMCID: PMC10447456 DOI: 10.1038/s41598-023-41003-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023] Open
Abstract
Bioreactor systems are very precious tools to generate living bone grafts in vitro. The aim of this study was to compare the effectiveness of rotating and perfusion bioreactor in the production of a living bone construct. Human bone marrow-derived mesenchymal stem cells (BMDSCs) were seeded on the surfaces of hydroxyapatite-based scaffolds and cultured for 21 days in three different conditions: (1) static 3D culture, (2) 3D culture in a perfusion bioreactor, and (3) dynamic 3D culture in a rotating bioreactor. Quantitative evaluation of cell number showed that cultivation in the perfusion bioreactor significantly reduced cell proliferation compared to the rotating bioreactor and static culture. Osteogenic differentiation test demonstrated that BMDSCs cultured in the rotating bioreactor produced significantly greater amount of osteopontin compared to the cells cultured in the perfusion bioreactor. Moreover, Raman spectroscopy showed that cultivation of BMDSCs in the rotating bioreactor enhanced extracellular matrix (ECM) mineralization that was characterized by B-type carbonated substitution of hydroxyapatite (associated with PO43- groups) and higher mineral-to-matrix ratio compared to the ECM of cells cultured in the perfusion system. Thus, it was concluded that the rotating bioreactor was much more effective than the perfusion one in the generation of bone tissue construct in vitro.
Collapse
Affiliation(s)
- Paulina Kazimierczak
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093, Lublin, Poland.
| | - Grzegorz Kalisz
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093, Lublin, Poland
| |
Collapse
|
3
|
Rodolfo M, Huber V, Cossa M, Gallino G, Leone BE, Vallacchi V, Rivoltini L, Vergani E. 3D tumor explant as a novel platform to investigate therapeutic pathways and predictive biomarkers in cancer patients. Front Immunol 2022; 13:1068091. [PMID: 36591316 PMCID: PMC9794575 DOI: 10.3389/fimmu.2022.1068091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitors can induce durable clinical responses in different human malignancies but the number of responding patients remains globally modest. The limited therapeutic efficacy of ICI depends on multiple factors, among which the immune suppressive features of the tumor microenvironment play a key role. For this reason, experimental models that enable dissection of the immune-hostile tumor milieu components are required to unravel how to overcome resistance and obtain full-fledged anti-tumor immunity. Recent evidence supports the usefulness of 3D ex vivo systems in retaining features of tumor microenvironment to elucidate molecular and immunologic mechanisms of response and resistance to immune checkpoint blockade. In this perspective article we discuss the recent advances in patient-derived 3D tumor models and their potential in support of treatment decision making in clinical setting. We will also share our experience with dynamic bioreactor tumor explant culture of samples from melanoma and sarcoma patients as a reliable and promising platform to unravel immune responses to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Monica Rodolfo
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy,*Correspondence: Monica Rodolfo,
| | - Veronica Huber
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Cossa
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianfrancesco Gallino
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Biagio E. Leone
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Viviana Vallacchi
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Vergani
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
4
|
Drochon A, Lesieur R, Durand M. Fluid dynamics characterisation of a rotating bioreactor for tissue engineering. Med Eng Phys 2022; 105:103831. [DOI: 10.1016/j.medengphy.2022.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
|
5
|
Mokhtari‐Jafari F, Amoabediny G, Haghighipour N, Zarghami R, Saatchi A, Akbari J, Salehi‐Nik N. Mathematical modeling of cell growth in a 3D scaffold and validation of static and dynamic cultures. Eng Life Sci 2016; 16:290-298. [DOI: 10.1002/elsc.201500047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Tissue engineering, an immensely important field in contemporary clinical practices, aims at the repair or replacement of damaged tissues. The mathematical model proposed herein shows the distribution and growth of cells in their characteristic time in a 3D scaffold model. This study contributes to the progress of simulation techniques in static and dynamic cultures of bone tissue. Brinkman, nutrient transport, and cell growth equations are brought together to quantify the growth behavior of cells. However, when a static culture is being studied, the Brinkman equation is eliminated. The model was validated by experimental cell culture using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay and scanning electron microscopy. Then, static and dynamic cultures were compared to assess the cell density and cell distribution in the scaffold. Cell counting after 21 days of cell culture showed that the number of cells increased 42‐fold in static and 53.5‐fold in dynamic cultures, which was in good agreement with our model estimations (37‐fold increase in the number of cells in static and 49‐fold increase in dynamic cultures). In conclusion, our mathematical model could predict cell distribution and growth in the scaffold.
Collapse
Affiliation(s)
- Fatemeh Mokhtari‐Jafari
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
- Department of Biomedical Engineering Research Center for New Technologies in Life Science Engineering University of Tehran Tehran Iran
- National Cell Bank of Iran Pasteur Institute of Iran Tehran Iran
| | - Ghassem Amoabediny
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
- Department of Biomedical Engineering Research Center for New Technologies in Life Science Engineering University of Tehran Tehran Iran
| | | | - Reza Zarghami
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
| | - Alireza Saatchi
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
- Department of Biomedical Engineering Research Center for New Technologies in Life Science Engineering University of Tehran Tehran Iran
| | - Javad Akbari
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
- Department of Biomedical Engineering Research Center for New Technologies in Life Science Engineering University of Tehran Tehran Iran
| | - Nasim Salehi‐Nik
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
- Department of Biomedical Engineering Research Center for New Technologies in Life Science Engineering University of Tehran Tehran Iran
- National Cell Bank of Iran Pasteur Institute of Iran Tehran Iran
| |
Collapse
|
6
|
Berenzi A, Steimberg N, Boniotti J, Mazzoleni G. MRT letter: 3D culture of isolated cells: a fast and efficient method for optimizing their histochemical and immunocytochemical analyses. Microsc Res Tech 2015; 78:249-54. [PMID: 25639567 DOI: 10.1002/jemt.22470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/10/2015] [Indexed: 11/10/2022]
Abstract
The rapid development of three-dimensional (3D) culture systems and engineered cell-based tissue models gave rise to an increasing need of new techniques, allowing the microscopic observation of cell behavior/morphology in tissue-like structures, as clearly signalled by several authors during the last decennium. With samples consisting of small aggregates of isolated cells grown in suspension, it is often difficult to produce an optimal embedded preparation that can be further successfully processed for classical histochemical investigations. In this work, we describe a new, easy to use, efficient method that enables to embed an enriched "preparation" of isolated cells/small 3D cell aggregates, without any cell stress or damage. As for after tissue-embedding procedures, the cellular blocks can be further suitably processed for efficient histochemical as well as immunohistochemical analyses, rendering more informative-and attractive-studies onto 3D cell-based culture of neo-tissues.
Collapse
Affiliation(s)
- Angiola Berenzi
- Department of Clinical and Experimental Sciences, Institute of Pathological Anatomy, School of Medicine, University of Brescia, Brescia, Italy
| | | | | | | |
Collapse
|