1
|
Zhao G, Zhou J, Tian Y, Chen Q, Mao D, Zhu J, Huang X. Remediation of fomesafen contaminated soil by Bacillus sp. Za: Degradation pathway, community structure and bioenhanced remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122460. [PMID: 37634569 DOI: 10.1016/j.envpol.2023.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Fomesafen is a diphenyl ether herbicide used to control the growth of broadleaf weeds in bean fields. The persistence, phytotoxicity, and negative impact on crop rotation associated with this herbicide have led to an increasing concern about the buildup of fomesafen residues in agricultural soils. The exigent matter of treatment and remediation of soils contaminated with fomesafen has surfaced. Nevertheless, the degradation pathway of fomesafen in soil remains nebulous. In this study, Bacillus sp. Za was utilized to degrade fomesafen residues in black and yellow brown soils. Fomesafen's degradation rate by strain Za in black soil reached 74.4%, and in yellow brown soil was 69.2% within 30 days. Twelve intermediate metabolites of fomesafen were identified in different soils, with nine metabolites present in black soil and eight found in yellow brown soil. Subsequently, the degradation pathway of fomesafen within these two soils was inferred. The dynamic change process of soil bacterial community structure in the degradation of fomesafen by strain Za was analyzed. The results showed that strain Za potentially facilitate the restoration of bacterial community diversity and richness in soil samples treated with fomesafen, and there were significant differences in species composition at phylum and genus levels between these two soils. However, both soils shared a dominant phylum and genus, Actinobacteriota, Proteoobacteria, Firmicutes and Chloroflexi dominated in two soils, with a high relative abundance of Sphingomonas and Bacillus. Moreover, an intermediate metabolite acetaminophen degrading bacterium, designated as Pseudomonas sp. YXA-1, was isolated from yellow brown soil. When strain YXA-1 was employed in tandem with strain Za to remediate fomesafen contaminated soil, the degradation rate of fomesafen markedly increased. Overall, this study furnishes crucial insights into the degradation pathway of fomesafen in soil, and presents bacterial strain resources potentially beneficial for soil remediation in circumstances of fomesafen contamination.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jing Zhou
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Qifeng Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Dongmei Mao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jianchun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
2
|
Cui N, Wang S, Khorram MS, Fang H, Yu Y. Microbial degradation of fomesafen and detoxification of fomesafen-contaminated soil by the newly isolated strain Bacillus sp. FE-1 via a proposed biochemical degradation pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1612-1619. [PMID: 29070446 DOI: 10.1016/j.scitotenv.2017.10.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/15/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Fomesafen is a long residual herbicide and poses a potential risk to environmental safety, leading to an increasing need to find eco-friendly and cost-effective techniques to remediate fomesafen-contaminated soils. In this article, a novel strain of Bacillus sp., FE-1 was isolated from paddy field soil. This strain was found to degrade fomesafen both in liquid medium and in soil. >82.9% of fomesafen, at concentrations of 0.5, 1 and 10mgL-1, was degraded by Bacillus sp. FE-1 in liquid medium within 14h. The optimal pH and temperature for degradation were 7.0 and 35°C, respectively. Soil samples inoculated with strain FE-1 showed significantly increased rates of fomesafen degradation. Two metabolites of fomesafen degradation were detected and identified as amino-fomesafen and 5-[2-chloro-4-(trifluoromethyl) phenoxy]-2-amino-benzoic acid. This is the first report of a novel fomesafen biodegradation pathway involving the reduction of a nitro group followed by the hydrolysis of an amide bond. The excellent remediation capability of the isolate FE-1 to detoxify fomesafen-contaminated soil was shown by bioassay of the sensitive aftercrop corn. The results indicate that Bacillus sp. FE-1 has potential for use in the bioremediation of fomesafen-contaminated soil.
Collapse
Affiliation(s)
- Ning Cui
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Saige Wang
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mahdi Safaei Khorram
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Huang X, He J, Yan X, Hong Q, Chen K, He Q, Zhang L, Liu X, Chuang S, Li S, Jiang J. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:272-297. [PMID: 29183604 DOI: 10.1016/j.pestbp.2016.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 06/07/2023]
Abstract
Chemical herbicides are widely used to control weeds and are frequently detected as contaminants in the environment. Due to their toxicity, the environmental fate of herbicides is of great concern. Microbial catabolism is considered the major pathway for the dissipation of herbicides in the environment. In recent decades, there have been an increasing number of reports on the catabolism of various herbicides by microorganisms. This review presents an overview of the recent advances in the microbial catabolism of various herbicides, including phenoxyacetic acid, chlorinated benzoic acid, diphenyl ether, tetra-substituted benzene, sulfonamide, imidazolinone, aryloxyphenoxypropionate, phenylurea, dinitroaniline, s-triazine, chloroacetanilide, organophosphorus, thiocarbamate, trazinone, triketone, pyrimidinylthiobenzoate, benzonitrile, isoxazole and bipyridinium herbicides. This review highlights the microbial resources that are capable of catabolizing these herbicides and the mechanisms involved in the catabolism. Furthermore, the application of herbicide-degrading strains to clean up herbicide-contaminated sites and the construction of genetically modified herbicide-resistant crops are discussed.
Collapse
Affiliation(s)
- Xing Huang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jian He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qing Hong
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qin He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shaochuang Chuang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shunpeng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China.
| |
Collapse
|