1
|
Marotta A, Preziosi V, Tomaiuolo G, Filippone G. Bridge-to-drain: How nanoparticles can promote coalescence in model polymer blends. J Colloid Interface Sci 2025; 688:140-149. [PMID: 39999487 DOI: 10.1016/j.jcis.2025.02.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
HYPOTHESIS Multiphase liquids with a droplet-in-matrix morphology are ubiquitous in many industries, from food to cosmetics and pharmaceuticals to plastics. The challenge is to control the average droplet size, which is a key parameter for the performance of the material. Nanoparticles at the droplet-matrix interface make it possible to stabilize polymer blends against coalescence. However, it has been shown that very low amounts of nanoparticles can have the opposite effect and surprisingly promote coalescence. Regardless of whether this phenomenon is desirable or not, it is important to understand it and potentially utilize it for rational design of multiphase fluids. EXPERIMENTS We use microfluidics to unveil the mechanism of nanoparticle-induced coalescence in a model blend of polydimethylsiloxane in poly(iso)butylene (PDMS/PB 4/96 vol/vol) containing tiny amounts (up to about 0.2 wt%) of zinc oxide (ZnO) nanoparticles driven at the droplet-matrix interface via a two-step mixing protocol. RESULTS Despite negligible effects on rheology and interfacial energy, the nanoparticles significantly promote coalescence. Analysis of hundreds of coalescence events revealed that the nanoparticles bridge colliding droplets and keep them in contact long enough to allow drainage of the matrix film even when the collisions occur at unfavorable angles where bare droplets do not coalesce. This novel "bridge-to-drain" mechanism requires that (i) the droplets are only partially covered by the particles and (ii) the latter have the ability to bridge droplets. A dimensionless critical surface coverage fraction was defined, above which the nanoparticles stop promoting coalescence and start stabilizing the microstructure.
Collapse
Affiliation(s)
- Angela Marotta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy.
| | - Valentina Preziosi
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy.
| | - Giovanna Tomaiuolo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, 80131 Napoli, Italy.
| | - Giovanni Filippone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|
2
|
Guo X, Fu Z, Liu X, He H, Li Q, Fan S, Zhao L. Tailoring the structures and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalic acid) blends via reactive graphene oxide. Int J Biol Macromol 2025; 302:140455. [PMID: 39900164 DOI: 10.1016/j.ijbiomac.2025.140455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
In conventional elastomer-toughened PLA blends, the huge sacrifice in strength and modulus due to poor compatibility is a major problem plaguing such materials. In this work, oxide-epoxy-graphene (SGO-GMA) nanoparticles that can chemically react with both components of PLA/PBAT blends are prepared to serve as compatibilizer by "thiol-ene click" reaction. It is found that SGO-GMA tends to be dispersed in the PBAT phase thermodynamically. However, the one-step process, SGO-GMA is dispersed in both PBAT and PLA phases because of the chemical reaction limiting its migration, and the crystallization rate of the PLA phase is significantly increased. In contrast, in the two-step process, SGO-GMA is anchored at the interface by the in-situ reaction between epoxy groups in GMA with PLA and PBAT. Consequently, the mechanical properties of the samples prepared using a two-step process demonstrate a significant advantage. Specifically, incorporating 1 wt% SGO-GMA into PLA/PBAT blends results in simultaneous enhancements in tensile strength, elongation at break, and impact strength by 7.9%, 40.7%, and 57.1%, respectively. The improved mechanical properties that based on the roles functionalized GO compatibilization are expected to facilitate the application of PLA in tissue engineering materials, in vivo and in vitro medical devices and other fields.
Collapse
Affiliation(s)
- Xiaoming Guo
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhenjiang Fu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xin Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Haifeng He
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qi Li
- Qingdao Sibokezhan Intelligent Technology Co., Ltd. Qingdao 266112, China
| | - Shiwen Fan
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lifen Zhao
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
3
|
Wang K, Lv H, Liu Z. Vulcanization Characteristics and Static/Dynamic Mechanical Properties of Chlorinated Butyl Rubber Matrix Materials. Polymers (Basel) 2025; 17:708. [PMID: 40292585 PMCID: PMC11945157 DOI: 10.3390/polym17060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
The damping performance of chlorinated butyl rubber (CIIR) is exceptional; however, its poor processability during vulcanization can lead to numerous defects. Natural rubber (NR) and ethylene propylene diene monomer rubber (EPDM) were selected to blend with CIIR for improving its processing performance. Their effects on the vulcanization characteristics, mechanical properties, and damping performance were investigated. Blending CIIR with NR can considerably increase the vulcanization speed of the rubber compound and improve production efficiency. The tensile strength of the vulcanizate first increases with an increase in the dosage of NR in NR/CIIR, and subsequently, it decreases before increasing again. The tensile strength first increases and then decreases with an increase in the EPDM dosage in EPDM/CIIR vulcanizate. The tensile strength increases by 15.6%when the EPDM dosage is 60 and 80 phr. EPDM and NR have similar effects on the damping performance of CIIR, which were evaluated by fitting the data of loss factor (∆tanδ) versus NR or EPDM dosage. Therefore, the quantity of NR or EPDM can be conveniently calculated based on performance requirements when designing the formula of the CIIR matrix materials.
Collapse
Affiliation(s)
| | | | - Zhixin Liu
- China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China; (K.W.)
| |
Collapse
|
4
|
Gürses A, Şahin E. Preparation and Characterization of Melamine Aniline Formaldehyde-Organo Clay Nanocomposite Foams (MAFOCF) as a Novel Thermal Insulation Material. Polymers (Basel) 2024; 16:3578. [PMID: 39771429 PMCID: PMC11679642 DOI: 10.3390/polym16243578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The main purpose of this study is to prepare a melamine aniline formaldehyde foam, an MAF copolymer, with lower water sensitivity and non-flammability properties obtained by the condensation reaction of melamine, aniline, and formaldehyde. In addition, the preparation of MAFF composites with organoclay reinforcement was determined as a secondary target in order to obtain better mechanical strength, heat, and sound insulation properties. For the synthesis of foams, the microwave irradiation technique, which offers advantages such as faster reactions, high yields and purities, and reduced curing times, was used together with the heating technique and the effect of organoclay content on the structural and textural properties of foams and both heat insulation and mechanical stability was investigated. Virgin melamine formaldehyde foam, MFF, melamine aniline formaldehyde foam, MAFFF, and melamine aniline formaldehyde-organoclay nanocomposite foams prepared with various organoclay contents, MAFOCFs, were characterized by HRTEM, FTIR, SEM, and XRD techniques. From spectroscopic and microscopic analyses, it was observed that organoclay flakes could be exfoliated without much change in the resin matrix with increasing clay content. In addition, it was determined that aniline formaldehyde, which is thought to enter the main polymer network as a bridge, caused textural changes in the polymeric matrix, and organoclay reinforcement also affected these changes. Although the highest compressive strength was obtained in MAFOCF5 foam with high organoclay content (0.40 MPa), it was determined that the compressive strengths in the nanocomposites were generally quite high despite their low bulk densities. In the prepared nanocomposite with 0.30% organoclay content (MAFOCF2), 0.33 MPa compressive strength and 0.051 thermal conductivity coefficient were measured. For virgin polymers and composites, bulk density, thermal conductivity, and compressive strength values were determined in the order of magnitude as MFF > MAFOCF1 > MAFOCF5 > MAFOCF6 > MAFF > MAFOCF3 > MAFOCF2 > MAFOCF4; MFF > MAFF > MAFOCF6 > MAFOCF5 > MAFOCF1 > MAFOCF4 > MAFOCF3 > MAFOCF2 and MAFOCF5 > MAFOCF4 > MAFOCF2 > MAFF > MAFOCF6 > MFF > MAFOCF1 > MAFOCF3. As a result, both compressive strength and thermal conductivity values indicate that nanocomposite foam with 0.20 wt% organoclay content can be a promising new insulation material.
Collapse
Affiliation(s)
- Ahmet Gürses
- Department of Chemistry Education, K.K. Education Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Elif Şahin
- Nano Science and Nano Engineering Department, Ataturk University, Erzurum 25240, Turkey;
| |
Collapse
|
5
|
Lin YC, Fang Y, Liu X, Raut A, Yin Y, Sprouster D, Tsai E, Nitodas S, Shmueli Y, Sokolov J, Rafailovich M. Utilizing Binary Phase Segregation and Extrusion to Enhance the Electronic Properties of Graphene Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65245-65254. [PMID: 39531260 DOI: 10.1021/acsami.4c11031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Our goal in this study is to incorporate graphene nanoplatelets (GNPs) in a polymer blend of poly(lactic acid) (PLA) and isotactic polypropylene (iPP) to facilitate the dispersion of GNPs and use the morphology of phase segregation to create a pathway for concentrating GNPs to achieve percolation with lower GNP concentration. Investigating the interfacial properties between PLA/GNPs and iPP/GNPs, we noticed that iPP has a lower contact angle on GNPs compared to PLA on GNPs. This showed a great potential that the GNP are easily confined in iPP rather than in PLA domains or at the PLA/PP interfaces. Utilizing this property, as the PLA content increases, the iPP content decreases, resulting in a reduction of the available space for GNPs. This decrease in space leads to a higher chance for GNPs to accumulate together. Furthermore, through careful control of the concentration in the immiscible blend of PLA/PP, it is possible to achieve a bicontinuous structure. This structure facilitates the creation of a pathway for the fillers, allowing for the use of minimal GNPs while achieving optimal electrical conductivity properties. The PLA/PP/GNPs can be oriented by the shear forces coming from the nozzle that produce a higher performance.
Collapse
Affiliation(s)
- Yu-Chung Lin
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yiwei Fang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Xiaoyang Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Aniket Raut
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yifan Yin
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - David Sprouster
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Esther Tsai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steve Nitodas
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yuval Shmueli
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jonathan Sokolov
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Miriam Rafailovich
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
6
|
Szewczak A, Łagód G. Experimental Research on the Possibility of Changing the Adhesion of Epoxy Glue to Concrete. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5398. [PMID: 39597222 PMCID: PMC11595513 DOI: 10.3390/ma17225398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Among the many methods of joining different materials, gluing is characterized by its most specific nature. In comparison with, for example, welded, screwed, or overlapped connections, a glued connection depends on the largest number of factors. Many of them are related to the phenomenon of adhesion, which is complicated by definition. It has many shapes and forms, and its existence determines not only the durability of such a joint but also the possibility of its execution. Epoxy polymers are among the most commonly used adhesives. Their extremely good parameters can be easily modified by additives in the form of fillers. Compatibility between the filler and the adhesive allows for further improving the adhesive parameters in the glued joint. However, in order to effectively combine the adhesive and the filler, different, often specific mixing methods must be used. The following study presents the results obtained in an experimental research program, the aim of which was to increase the adhesion of epoxy resin to a properly prepared concrete substrate. As a method to increase the final adhesion, the addition of microsilica and carbon nanotubes in an experimentally determined amount was selected. The use of sonication as a mixing method together with cavitation allowed for improving the parameters which determine the final adhesion of the adhesive to concrete. The parameters which were selected to describe the course of changes in the adhesion of the adhesive to the concrete substrate were the viscosity, free surface energy, surface parameters, adhesion, and SEM images of the tested resin in various modification configurations. The obtained results make it possible to form stronger and more durable adhesive joints during the reinforcement of concrete structural elements using fiber-reinforced polymer (FRP) composites.
Collapse
Affiliation(s)
- Andrzej Szewczak
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Grzegorz Łagód
- Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
| |
Collapse
|
7
|
Dimonie D, Grigorescu RM, Trică B, Raduly M, Damian CM, Trusca R, Mustatea AE, Dima SO, Oancea F. De- and Re-Structuring of Starch to Control the Melt and Solid State Visco-Elasticity as Method for Getting New Multi Component Compounds with Scalable Properties. Polymers (Basel) 2024; 16:3063. [PMID: 39518272 PMCID: PMC11548643 DOI: 10.3390/polym16213063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
The aim of the article was to design and develop new thermodynamically stable starch-based compounds, with scalable properties, that are melt-processable into finished products by classic or 3D printing methods. This is based on phenomena of de-structuring, entanglement compatibilization, and re-structuring of starch, along with the modification of the polymer, polyvinyl alcohol (PVA), by following an experimental sequence involving pre-treatment and melt compounding in two stages. The new compounds selection was made considering the dependence of viscoelastic properties on formulation and flowing conditions in both the melted and solid states. Starting from starch with 125 °C glass transition and PVA with a Tg at 85 °C, and following the mentioned experimental sequence, new starch-PVA compounds with a high macromolecular miscibility and proven thermodynamic stability for at least 10 years, with glass transitions ranging from -10 °C to 50 °C, optimal processability through both classical melt procedures (extrusion, injection) and 3D printing, as well as good scalability properties, were achieved. The results are connected to the approaches considering the relationship between miscibility and the lifetime of compounds with renewable-based polymer content. By deepening the understanding of the thermodynamic stability features characterizing these compounds, it can be possible to open the way for starch usage in medium-life compositions, not only for short-life applications, as until now.
Collapse
Affiliation(s)
- Doina Dimonie
- Chemical Engineering and Biotechnologies Faculty’ Doctoral School, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.D.); (A.-E.M.)
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei Street, 060021 Bucharest, Romania; (R.-M.G.); (M.R.); (S.-O.D.); (F.O.)
| | - Ramona-Marina Grigorescu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei Street, 060021 Bucharest, Romania; (R.-M.G.); (M.R.); (S.-O.D.); (F.O.)
| | - Bogdan Trică
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei Street, 060021 Bucharest, Romania; (R.-M.G.); (M.R.); (S.-O.D.); (F.O.)
| | - Monica Raduly
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei Street, 060021 Bucharest, Romania; (R.-M.G.); (M.R.); (S.-O.D.); (F.O.)
| | - Celina-Maria Damian
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (C.-M.D.); (R.T.)
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gh. Polizu Street, No. 1-7, 010061 Bucharest, Romania
| | - Roxana Trusca
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (C.-M.D.); (R.T.)
| | - Alina-Elena Mustatea
- Chemical Engineering and Biotechnologies Faculty’ Doctoral School, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.D.); (A.-E.M.)
| | - Stefan-Ovidiu Dima
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei Street, 060021 Bucharest, Romania; (R.-M.G.); (M.R.); (S.-O.D.); (F.O.)
| | - Florin Oancea
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei Street, 060021 Bucharest, Romania; (R.-M.G.); (M.R.); (S.-O.D.); (F.O.)
| |
Collapse
|
8
|
Zhang W, Shen J, Guo X, Wang K, Jia J, Zhao J, Zhang J. Comprehensive Investigation into the Impact of Degradation of Recycled Polyethylene and Recycled Polypropylene on the Thermo-Mechanical Characteristics and Thermal Stability of Blends. Molecules 2024; 29:4499. [PMID: 39339494 PMCID: PMC11434545 DOI: 10.3390/molecules29184499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The impact of degradation on plastics is a critical factor influencing their properties and behavior, particularly evident in polyethylene (PE) and polypropylene (PP) and their blends. However, the effect of photoaging and thermal degradation, specifically within recycled polyethylene (rPE) and recycled polypropylene (rPP), on the thermo-mechanical and thermostability aspects of these blends remains unexplored. To address this gap, a range of materials, including virgin polyethylene (vPE), recycled polyethylene (rPE), virgin polypropylene (vPP), recycled polypropylene (rPP), and their blends with different ratios, were comprehensively investigated. Through a systematic assessment encompassing variables such as melting flow index (MFI), functional groups, mechanical traits, crystallization behavior, microscopic morphology, and thermostability, it was found that thermo-oxidative degradation generated hydroxyl and carboxyl functional groups in rPE and rPP. Optimal mechanical properties were achieved with a 6:4 mass ratio of rPE to rPP, as validated by FTIR spectroscopy and microscopic morphology. By establishing the chemical model, the changes in the system with an rPE-rPP ratio of 6:4 and 8:2 were monitored by the molecular simulation method. When the rPE-rPP ratio was 6:4, the system's energy was lower, and the number of hydrogen bonds was higher, which also confirmed the above experimental results. Differential scanning calorimetry revealed an increased crystallization temperature in rPE, a reduced crystallization peak area in rPP, and a diminished crystallization capacity in rPE/rPP blends, with rPP exerting a pronounced influence. This study plays a pivotal role in enhancing recycling efficiency and reducing production costs for waste plastics, especially rPE and rPP-the primary components of plastic waste. By uncovering insights into the degradation effects and material behaviors, our research offers practical pathways for more sustainable waste management. This approach facilitates the optimal utilization of the respective performance characteristics of rPE and rPP, enabling the development of highly cost-effective rPE/rPP blend materials and promoting the efficient reuse of waste materials.
Collapse
Affiliation(s)
- Wencai Zhang
- School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- School of Traffic Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030619, China
| | - Jun Shen
- School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaogang Guo
- Thomas D. Larson Pennsylvania Transportation Institute, College of Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Ke Wang
- School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jun Jia
- School of Traffic Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030619, China
| | - Junting Zhao
- School of Traffic Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030619, China
| | - Jinshuai Zhang
- School of Traffic Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030619, China
| |
Collapse
|
9
|
Mahović Poljaček S, Priselac D, Tomašegović T, Leskovac M, Šoster A, Stanković Elesini U. Quantitative Analysis of Morphology and Surface Properties of Poly(lactic acid)/Poly(ε-caprolactone)/Hydrophilic Nano-Silica Blends. Polymers (Basel) 2024; 16:1739. [PMID: 38932088 PMCID: PMC11207708 DOI: 10.3390/polym16121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
A quantitative analysis of the morphology, as well as an analysis of the distribution of components and surface/interfacial properties in poly(lactic acid)(PLA) InegoTM 3251D, poly(ε-caprolactone) (PCL) Capa 6800 and nano-silica (SiO2) Aerosil®200 blends, was conducted in this research. The study aimed to improve the understanding of how PLA, PCL, and nano-SiO2 interact, resulting in the specific morphology and surface properties of the blends. Samples were produced by varying the concentration of all three components. They were analyzed using SEM, EDS mapping, water contact angle measurements, surface free energy calculation, adhesion parameter measurements, and FTIR-ATR spectroscopy. The results showed that the addition of SiO2 nanoparticles led to an increase in the contact angle of water, making the surface more hydrophobic. SEM images of the blends showed that increasing the PCL content reduced the size of spherical PCL elements in the blends. FTIR-ATR analysis showed that SiO2 nanoparticles influenced the structure ordering of PLA in the blend with equal portions of PLA and PCL. In the samples with a higher PCL content, the spherical elements present in the samples with a higher PLA/PCL ratio have been reduced, indicating better interactions at the interface between PLA, PCL, and SiO2. SEM-EDS mapping of the PLA/PCL 100/0 blend surfaces revealed the presence of SiO2 clusters and the silicon (Si) concentration reaching up to ten times higher than the nominal concentration of SiO2. However, with the addition of 3% SiO2 to the blend containing PCL, the structure became more granular. Specifically, Si protrusions in the sample PLA/PCL 90/10 with 3% SiO2 displayed 29.25% of Si, and the sample PLA/PCL 70/30 with 3% SiO2 displayed an average of 10.61% of Si at the protrusion locations. The results confirmed the affinity of SiO2 to be encapsulated by PCL. A better understanding of the interactions between the materials in the presented blends and the quantitative analysis of their morphology could improve the understanding of their properties and allow the optimization of their application for different purposes.
Collapse
Affiliation(s)
| | - Dino Priselac
- Faculty of Graphic Arts, University of Zagreb, 10000 Zagreb, Croatia;
| | | | - Mirela Leskovac
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Aleš Šoster
- Faculty of Natural Sciences and Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.Š.); (U.S.E.)
| | - Urška Stanković Elesini
- Faculty of Natural Sciences and Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.Š.); (U.S.E.)
| |
Collapse
|
10
|
Ma F, Gao Y, Xie W, Wu D. Effect of hydrophobic modification of chitin nanocrystals on role as anti-nucleator in the crystallization of poly(ε-caprolactone)/polylactide blend. Int J Biol Macromol 2024; 269:132097. [PMID: 38710249 DOI: 10.1016/j.ijbiomac.2024.132097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Biodegradable polymer blends filled with rod-like polysaccharide nanocrystals have attracted much attention because each component in this type of ternary composites is biodegradable, and the final properties are more easily tailored comparing to those of binary composites. In this work, chitin nanocrystals (ChNCs) were used as nanofiller for the biodegradable poly(ε-caprolactone) (PCL)/polylactide (PLA) immiscible blend to prepare ternary composites for a crystallization study. The results revealed that the crystallization behavior of PCL/PLA blend matrices strongly depended on the surface properties of ChNCs. Non-modified ChNCs and modified ChNCs played completely different roles during crystallization of the ternary systems: the former was inert filler, while the latter acted as anti-nucleator to the PCL phase. This alteration was resulted from the improved ChNC-PCL affinity after modification of ChNCs, which was due to the 'interfacial dilution effect' and the preferential dispersion of ChNCs. This work presents a unique perspective on the nucleation role of ChNCs in the crystallization of immiscible PCL/PLA blends, and opens up a new application scenario for ChNCs as anti-nucleator.
Collapse
Affiliation(s)
- Fen Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Yuxin Gao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Wenyuan Xie
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Institute for Innovative Materials & Energy, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
11
|
Ma Z, Yin T, Jiang Z, Weng Y, Zhang C. Bio-based epoxidized soybean oil branched cardanol ethers as compatibilizers of polybutylene succinate (PBS)/polyglycolic acid (PGA) blends. Int J Biol Macromol 2024; 259:129319. [PMID: 38211920 DOI: 10.1016/j.ijbiomac.2024.129319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Blending poly(butylene succinate) (PBS) with another biodegradable polymer, polyglycolic acid (PGA), has been demonstrated to improve the barrier performance of PBS. However, blending these two polymers poses a challenge because of their incompatibility and large difference of their melting temperatures. In this study, we synthesized epoxidized soybean oil branched cardanol ether (ESOn-ECD), a bio-based and environmentally friendly compatibilizer, and used it to enhance the compatibility of PBS/PGA blends. It was demonstrated that the terminal carboxyl/hydroxyl groups of PBS and PGA can react with ESOn-ECD in situ, leading to branching and chain extension of PBS and PGA. The addition of ESO3-ECD to the blend considerably diminished the dispersed phase of PGA. Specifically, in comparison to the PBS/PGA blend without a compatibilizer, the diameter of the PGA phase decreased from 2.04 μm to 0.45 μm after the addition of 0.7 phr of ESO3-ECD, and the boundary between the two phases became difficult to distinguish. Additionally, the mechanical properties of the blends were improved after addition of ESO3-ECD. This research expands the potential applications of these materials and promotes the use of bio-based components in blend formulations.
Collapse
Affiliation(s)
- Zhirui Ma
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Tian Yin
- China Shenhua Coal to Liquid and Chemical Co, Ltd, Beijing, China
| | - Zhikui Jiang
- China Shenhua Coal to Liquid and Chemical Co, Ltd, Beijing, China
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Caili Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
12
|
Jarosińska E, Zambrowska Z, Witkowska Nery E. Methods of Protection of Electrochemical Sensors against Biofouling in Cell Culture Applications. ACS OMEGA 2024; 9:4572-4580. [PMID: 38313548 PMCID: PMC10831843 DOI: 10.1021/acsomega.3c07660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 02/06/2024]
Abstract
In this work, we evaluated more than 10 antifouling layers presenting different modes of action for application in electrochemical sensors. These layers included porous materials, permselective membranes, hydrogels, silicate sol-gels, proteins, and sp3 hybridized carbon. To evaluate the protective effects of the antifouling modification as well as its impact on the catalyst, we adsorbed a redox mediator on the electrode surface. Five of the tested coatings allowed us to preserve the electrochemical properties of the tested mediator. Later studies showed that sol-gel silicate layer, poly-l-lactic acid, and poly(l-lysine)-g-poly(ethylene glycol) were the only ones capable of sustaining the catalyst's performance during prolonged incubation in a cell culture medium. The highest signal deterioration was observed, as expected during the first few hours of incubation in a cell culture environment. Tested layers exhibited different dynamics of the protective effect. The poly-l-lactic acid layer presented lower changes in the first hours of the study but suffered complete signal deterioration after 72 h. Whereas the signal intensity of the silicate layer was lowered by half after just 3 h but was still visible after 6 weeks of constant incubation of the electrode in the cell culture.
Collapse
Affiliation(s)
- Elżbieta Jarosińska
- Institute of Physical Chemistry,
Polish Academy of Sciences, Warsaw, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Emilia Witkowska Nery
- Institute of Physical Chemistry,
Polish Academy of Sciences, Warsaw, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
13
|
Pesaranhajiabbas E, Misra M, Mohanty AK. Recent progress on biodegradable polylactic acid based blends and their biocomposites: A comprehensive review. Int J Biol Macromol 2023; 253:126231. [PMID: 37567528 DOI: 10.1016/j.ijbiomac.2023.126231] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Being less dependent on non-renewable resources as well as protecting the environment from waste streams have become two critical primers for a global movement toward replacing conventional plastics with renewable and biodegradable polymers. Despite all these efforts, only a few biodegradable polymers have paved their way successfully into the market. Polylactic acid is one of these biodegradable polymers that has been investigated thoroughly by researchers as well as manufactured on a large industrial scale. It is synthesized from lactic acid obtained mainly from the biological fermentation of carbohydrates, which makes this material a renewable polymer. Besides its renewability, it benefits from some attractive mechanical performances including high strength and stiffness, though brittleness is a major drawback of this biopolymer. Accordingly, the development of blends and biocomposites based on polylactic acid with highly flexible biodegradable polymers, specifically poly(butylene adipate co terephthalate) has been the objective of many investigations recently. This paper focuses on the blends and biocomposites based on these two biopolymers, specifically their mechanical, rheological, and biodegradation, the main characteristics that are crucial for being considered as a biodegradable substitution for conventional non-biodegradable polymers.
Collapse
Affiliation(s)
- Ehsan Pesaranhajiabbas
- School of Engineering, Thornbrough Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada; Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Manjusri Misra
- School of Engineering, Thornbrough Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada; Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
| | - Amar K Mohanty
- School of Engineering, Thornbrough Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada; Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
| |
Collapse
|
14
|
Mokrane N, Kaci M, Lopez-Cuesta JM, Dehouche N. Combined Effect of Poly(lactic acid)-Grafted Maleic Anhydride Compatibilizer and Halloysite Nanotubes on Morphology and Properties of Polylactide/Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Blends. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6438. [PMID: 37834577 PMCID: PMC10573863 DOI: 10.3390/ma16196438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Given the global challenge of plastic pollution, the development of new bioplastics to replace conventional polymers has become a priority. It is therefore essential to achieve a balance in the performances of biopolymers in order to improve their commercial availability. In this topic, this study aims to investigate the morphology and properties of poly(lactic acid) (PLA)/ poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) (at a ratio of 75/25 (w/w)) blends reinforced with halloysite nanotubes (HNTs) and compatibilized with poly(lactic acid)-grafted maleic anhydride (PLA-g-MA). HNTs and PLA-g-MA were added to the polymer blend at 5 and 10 wt.%, respectively, and everything was processed via melt compounding. A scanning electron microscopy (SEM) analysis shows that HNTs are preferentially localized in PHBHHx nodules rather than in the PLA matrix due to its higher wettability. When HNTs are combined with PLA-g-MA, a finer and a more homogeneous morphology is observed, resulting in a reduction in the size of PHBHHx nodules. The presence of HNTs in the polymer blend improves the impact strength from 12.7 to 20.9 kJ/mm2. Further, with the addition of PLA-g-MA to PLA/PHBHHX/HNT nanocomposites, the tensile strength, elongation at break, and impact strength all improve significantly, rising from roughly 42 MPa, 14.5%, and 20.9 kJ/mm2 to nearly 46 MPa, 18.2%, and 31.2 kJ/mm2, respectively. This is consistent with the data obtained via dynamic mechanical analysis (DMA). The thermal stability of the compatibilized blend reinforced with HNTs is also improved compared to the non-compatibilized one. Overall, this study highlights the effectiveness of combining HNTs and PLA-g-AM for the properties enhancement of PLA/PHBHHx blends.
Collapse
Affiliation(s)
- Nawel Mokrane
- Laboratoire des Matériaux Polymères Avancés, Faculté de Technologie, Université de Bejaia, Béjaïa 06000, Algeria; (N.M.); (M.K.); (N.D.)
- Polymères Composites et Hybrides (PCH), IMT Mines Ales, 6, Avenue de Clavières, 30319 Alès, France
| | - Mustapha Kaci
- Laboratoire des Matériaux Polymères Avancés, Faculté de Technologie, Université de Bejaia, Béjaïa 06000, Algeria; (N.M.); (M.K.); (N.D.)
| | - José-Marie Lopez-Cuesta
- Polymères Composites et Hybrides (PCH), IMT Mines Ales, 6, Avenue de Clavières, 30319 Alès, France
| | - Nadjet Dehouche
- Laboratoire des Matériaux Polymères Avancés, Faculté de Technologie, Université de Bejaia, Béjaïa 06000, Algeria; (N.M.); (M.K.); (N.D.)
| |
Collapse
|
15
|
Kelnar I, Kaprálková L, Němeček P, Dybal J, Abdel-Rahman RM, Vyroubalová M, Nevoralová M, Abdel-Mohsen AM. The Effects of the Deacetylation of Chitin Nanowhiskers on the Performance of PCL/PLA Bio-Nanocomposites. Polymers (Basel) 2023; 15:3071. [PMID: 37514460 PMCID: PMC10384066 DOI: 10.3390/polym15143071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The multiple roles of organic nanofillers in biodegradable nanocomposites (NC) with a blend-based matrix is not yet fully understood. This work highlights combination of reinforcing and structure-directing effects of chitin nanowhiskers (CNW) with different degrees of deacetylation (DA), i.e., content of primary or secondary amines on their surface, in the nanocomposite with the PCL/PLA 1:1 matrix. Of importance is the fact that aminolysis with CNW leading to chain scission of both polyesters, especially of PLA, is practically independent of DA. DA also does not influence thermal stability. At the same time, the more marked chain scission/CNW grafting for PLA in comparison to PCL, causing changes in rheological parameters of components and related structural alterations, has crucial effects on mechanical properties in systems with a bicontinuous structure. Favourable combinations of multiple effects of CNW leads to enhanced mechanical performance at low 1% content only, whereas negative effects of structural changes, particularly of changed continuity, may eliminate the reinforcing effects of CNW at higher contents. The explanation of both synergistic and antagonistic effects of structures formed is based on the correspondence of experimental results with respective basic model calculations.
Collapse
Affiliation(s)
- Ivan Kelnar
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Ludmila Kaprálková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Pavel Němeček
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Jiří Dybal
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Rasha M Abdel-Rahman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Michaela Vyroubalová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Martina Nevoralová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - A M Abdel-Mohsen
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| |
Collapse
|
16
|
Rajabifar N, Rostami A. Investigation of the Effect of Hybrid Nanofiller on the Mechanical Performance and Surface Properties of Bio-Based Polylactic Acid/Polyolefin Elastomer (PLA/POE) Blend. Polymers (Basel) 2023; 15:2708. [PMID: 37376354 DOI: 10.3390/polym15122708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Polylactic acid has stood out among bio-based polymers for its usage in the food packaging industry and biomedical fields. Through the melt mixing process, the toughened poly(lactic) acid (PLA) was prepared with polyolefin elastomer (POE), incorporated via various ratios of nanoclay and a fixed amount of nanosilver particles (AgNPs). The correlation between the compatibility and morphology, mechanical properties, and surface roughness of samples with nanoclay was studied. The calculated surface tension and melt rheology confirmed the interfacial interaction demonstrated by droplet size, impact strength, and elongation at break. Each blend sample exhibited matrix-dispersed droplets, and the size of POE droplets steadily dropped with increasing nanoclay content, corresponding to the enhanced thermodynamic affinity between PLA and POE. Scanning electron microscopy (SEM) acknowledged that the inclusion of nanoclay in the PLA/POE blend ameliorated the mechanical performance by preferable localization in the interface of used components. The optimum value of elongation at break was acquired at about 32.44%, where the incorporation of 1 wt.% nanoclay led, respectively, to 171.4% and 24% enhancement rather than the PLA/POE blend with the composition of 80/20 and the virgin PLA. Similarly, the impact strength reached 3.46 ± 0.18 kJ m-1 as the highest obtained amount, showing the proximity of 23% progress to the unfilled PLA/POE blend. Surface analysis indicated that adding nanoclay caused the augment of surface roughness from 23.78 ± 5.80 µm in the unfilled PLA/POE blend to 57.65 ± 18.2 µm in PLA/POE contained 3 wt.% nanoclay. Rheological measurements implied that organoclay resulted in the strengthening of melt viscosity as well as the rheological parameters such as storage modulus and loss modulus. Han plot further showed that the storage modulus is always higher than the loss modulus in all prepared PLA/POE nanocomposite samples, corresponding to the restriction of polymer chains mobility induced by the formation of strong molecular interaction between nanofillers and polymer chains.
Collapse
Affiliation(s)
- Nariman Rajabifar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
| |
Collapse
|
17
|
Kumar V, Alam MN, Yewale MA, Park SS. Tailoring Triple Filler Systems for Improved Magneto-Mechanical Performance in Silicone Rubber Composites. Polymers (Basel) 2023; 15:polym15102287. [PMID: 37242867 DOI: 10.3390/polym15102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The demand for multi-functional elastomers is increasing, as they offer a range of desirable properties such as reinforcement, mechanical stretchability, magnetic sensitivity, strain sensing, and energy harvesting capabilities. The excellent durability of these composites is the key factor behind their promising multi-functionality. In this study, various composites based on multi-wall carbon nanotubes (MWCNT), clay minerals (MT-Clay), electrolyte iron particles (EIP), and their hybrids were used to fabricate these devices using silicone rubber as the elastomeric matrix. The mechanical performance of these composites was evaluated, with their compressive moduli, which was found to be 1.73 MPa for the control sample, 3.9 MPa for MWCNT composites at 3 per hundred parts of rubber (phr), 2.2 MPa for MT-Clay composites (8 phr), 3.2 MPa for EIP composites (80 phr), and 4.1 MPa for hybrid composites (80 phr). After evaluating the mechanical performance, the composites were assessed for industrial use based on their improved properties. The deviation from their experimental performance was studied using various theoretical models such as the Guth-Gold Smallwood model and the Halpin-Tsai model. Finally, a piezo-electric energy harvesting device was fabricated using the aforementioned composites, and their output voltages were measured. The MWCNT composites showed the highest output voltage of approximately 2 milli-volt (mV), indicating their potential for this application. Lastly, magnetic sensitivity and stress relaxation tests were performed on the hybrid and EIP composites, with the hybrid composite demonstrating better magnetic sensitivity and stress relaxation. Overall, this study provides guidance on achieving promising mechanical properties in such materials and their suitability for various applications, such as energy harvesting and magnetic sensitivity.
Collapse
Affiliation(s)
- Vineet Kumar
- School of Mechanical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Md Najib Alam
- School of Mechanical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Manesh A Yewale
- School of Mechanical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sang-Shin Park
- School of Mechanical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
18
|
Borbath T, Nicula N, Zaharescu T, Borbath I, Boros TF. The Contribution of BaTiO 3 to the Stability Improvement of Ethylene-Propylene-Diene Rubber: Part I-Pristine Filler. Polymers (Basel) 2023; 15:polym15092190. [PMID: 37177336 PMCID: PMC10181093 DOI: 10.3390/polym15092190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
This study presents the functional effects of BaTiO3 powder loaded in ethylene-propylene-diene rubber (EPDM) in three concentrations: 0, 1, and 2.5 phr. The characterization of mechanical properties, oxidation strength, and biological vulnerability is achieved on these materials subjected to an accelerated degradation stimulated by their γ-irradiation at 50 and 100 kGy. The thermal performances of these materials are improved when the content of filler becomes higher. The results obtained by chemiluminescence, FTIR-ATR, and mechanical testing indicate that the loading of 2.5 phr is the most proper composition that resists for a long time after it is γ-irradiated at a high dose. If the oxidation starts at 176 °C in the pristine polymer, it becomes significant at 188 and 210 °C in the case of composites containing 1 and 2.5 phr of filler, respectively. The radiation treatment induces a significant stability improvement measured by the enlargement of temperature range by more than 1.5 times, which explains the durability growth for the radiation-processed studied composites. The extension of the stability period is also based on the interaction between degrading polymer substrate and particle surface in the composite richest in titanate fraction when the exposure is 100 kGy was analyzed. The mechanical testing as well as the FTIR investigation clearly delimits the positive effects of carbon black on the functionality of EPDM/BaTiO3 composites. The contribution of carbon black is a defining feature of the studied composites based on the nucleation of the host matrix by which the polymer properties are effectively ameliorated.
Collapse
Affiliation(s)
- Tunde Borbath
- ROSEAL SA, 5 A Nicolae Bălcescu, Odorheiu Secuiesc, 535600 Harghita, Romania
| | - Nicoleta Nicula
- INCDIE ICPE CA, 313 Splaiul Unirii, 030138 Bucharest, Romania
| | - Traian Zaharescu
- ROSEAL SA, 5 A Nicolae Bălcescu, Odorheiu Secuiesc, 535600 Harghita, Romania
- INCDIE ICPE CA, 313 Splaiul Unirii, 030138 Bucharest, Romania
| | - Istvan Borbath
- ROSEAL SA, 5 A Nicolae Bălcescu, Odorheiu Secuiesc, 535600 Harghita, Romania
| | | |
Collapse
|
19
|
Gebrekrstos A, Ray SS. Superior electrical conductivity and mechanical properties of phase‐separated polymer blend composites by tuning the localization of nanoparticles for electromagnetic interference shielding applications. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Amanuel Gebrekrstos
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| |
Collapse
|
20
|
Ganjeh-Anzabi P, Jahandideh H, Kedzior SA, Trifkovic M. Precise quantification of nanoparticle surface free energy via colloidal probe atomic force microscopy. J Colloid Interface Sci 2023; 641:404-413. [PMID: 36940596 DOI: 10.1016/j.jcis.2023.03.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/01/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Interfacial interactions of nanoparticles (NPs) in colloids are greatly influenced by the NP surface free energy (SFE). Due to the intrinsic physical and chemical heterogeneity of the NP surface, measuring SFE is nontrivial. The use of direct force measurement methods, such as colloidal probe atomic force microscopy (CP-AFM), have been proven to be effective for the determination of SFE on relatively smooth surfaces, but fail to provide reliable measurements for rough surfaces generated by NPs. Here, we developed a reliable approach to determine the SFE of NPs by adopting Persson's contact theory to include the effect of surface roughness on the measurements in CP-AFM experiments. We obtain the SFE for a range of materials varying in surface roughness and surface chemistry. The reliability of the proposed method is verified by the SFE determination of polystyrene. Subsequently, the SFE of bare and functionalized silica, graphene oxide, and reduced graphene oxide were quantified and validity of the results was demonstrated. The presented method unlocks the potential of CP-AFM as a robust and reliable method of the SFE determination of nanoparticles with a heterogeneous surface, which is challenging to obtain with conventionally implemented experimental techniques.
Collapse
Affiliation(s)
- Pejman Ganjeh-Anzabi
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Heidi Jahandideh
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Stephanie A Kedzior
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
21
|
Azubuike L, Wang J, Sundararaj U. Carbon Nanotube Migration in a Compatibilized Blend System, Leading to Kinetically Induced Enhancement in Electrical Conductivity and Mechanical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1039. [PMID: 36985933 PMCID: PMC10051242 DOI: 10.3390/nano13061039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Kinetic factors that facilitate carbon nanotube (CNT) migration in a polymer blend from a high-density polyethylene (HDPE) phase to a poly (p-phenylene ether) (PPE) phase were studied, with the objective to induce CNT migration and localization at the interface. Herein, a CNT filler was pre-localized in an HDPE polymer and then blended with PPE at different blend compositions of 20:80, 40:60, 60:40, and 80:20 of PPE/HDPE at a constant filler concentration of 1 wt%. The level of CNT migration was studied at different mixing times of 5 and 10 min. The electrical conductivity initially increased by 2-3 orders of magnitude, with an increase in the PPE content up to 40%, and then it decreased significantly by up to 12 orders of magnitude at high PPE content up to 100%. We determined that the extent of migration was related to the difference in the melt viscosity between the constituent polymers. A triblock copolymer styrene-ethylene/butylene-styrene (SEBS) was used to improve the blend miscibility, and 2 wt% copolymer was found to be the optimum concentration for the electrical properties for the two blend compositions of 20:80 and 80:20 of PPE/HDPE, at a constant filler concentration of 1 wt%. The introduction of the SEBS triblock copolymer significantly increased the conductivity almost by almost four orders of magnitude for PPE/HDPE/80:20 composites with 1 wt% CNT and 2 wt% SEBS compared to the uncompatibilized blend nanocomposite. The mechanical strength of the compatibilized blend nanocomposites was found to be higher than the unfilled compatibilized blend (i.e., without CNT), uncompatibilized blend nanocomposites, and the pristine blend, illustrating the synergistic effect of adding nanofillers and a compatibilizer. SEM and TEM microstructures were used to interpret the structure-property relationships of these polymer blend nanocomposites.
Collapse
Affiliation(s)
- Lilian Azubuike
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jun Wang
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
22
|
Takayama T. Inorganic Particles Contribute to the Compatibility of Polycarbonate/Polystyrene Polymer Blends. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1536. [PMID: 36837166 PMCID: PMC9959465 DOI: 10.3390/ma16041536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Polycarbonate (PC), an engineering plastic, has excellent mechanical strength and toughness. Moreover, this transparent polymer material can be used in fields where materials require mechanical properties and transparency. Nevertheless, PC is known to have a high melt viscosity. Moreover, blending with polystyrene (PS), an inherently brittle material, has been used to adjust its melt viscosity. As a result, the PS makes PC/PS polymer blends more brittle than PC alone. As described herein, after attempting to achieve compatibility with inorganic particles, the results show that the dispersion of small amounts of inorganic clay and silica particles in PC/PS polymer blends maintained transparency while improving the impact strength to a level comparable to that of polycarbonate. Apparently, the inorganic particles promote the fine dispersion of PS. Moreover, the spherical morphology of the inorganic particles is more effective at compatibilizing the polymer blend because the inorganic particles can apply isotropic interaction forces.
Collapse
Affiliation(s)
- Tetsuo Takayama
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa 992-8510, Japan
| |
Collapse
|
23
|
Kelnar I, Kaprálková L, Krejčíková S, Dybal J, Vyroubalová M, Abdel-Mohsen AM. Effect of Polydopamine Coating of Cellulose Nanocrystals on Performance of PCL/PLA Bio-Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1087. [PMID: 36770094 PMCID: PMC9920865 DOI: 10.3390/ma16031087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In bio-nanocomposites with a poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) matrix with neat and polydopamine (PDA)-coated cellulose nanocrystals (CNCd), the use of different mixing protocols with masterbatches prepared by solution casting led to marked variation of localization, as well as reinforcing and structure-directing effects, of cellulose nanocrystals (CNC). The most balanced mechanical properties were found with an 80/20 PLA/PCL ratio, and complex PCL/CNC structures were formed. In the nanocomposites with a bicontinuous structure (60/40 and 40/60 PLA/PCL ratios), pre-blending the CNC and CNCd/PLA caused a marked increase in the continuity of mechanically stronger PLA and an improvement in related parameters of the system. On the other hand, improved continuity of the PCL phase when using a PCL masterbatch may lead to the reduction in or elimination of reinforcing effects. The PDA coating of CNC significantly changed its behavior. In particular, a higher affinity to PCL and ordering of PLA led to dissimilar structures and interface transformations, while also having antagonistic effects on mechanical properties. The negligible differences in bulk crystallinity indicate that alteration of mechanical properties may have originated from differences in crystallinity at the interface, also influenced by presence of CNC in this area. The complex effect of CNC on bio-nanocomposites, including the potential of PDA coating to increase thermal stability, is worthy of further study.
Collapse
|
24
|
Neuman A, Zhang S, Lee D, Riggleman RA. Increases in Miscibility of a Binary Polymer Blend Confined within a Nanoparticle Packing. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Anastasia Neuman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Shannon Zhang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Robert A. Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
25
|
Wędrychowicz M, Papacz W, Walkowiak J, Bydałek A, Piotrowicz A, Skrzekut T, Kurowiak J, Noga P, Kostrzewa M. Determining the Mechanical Properties of Solid Plates Obtained from the Recycling of Cable Waste. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9019. [PMID: 36556825 PMCID: PMC9782671 DOI: 10.3390/ma15249019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this article, the possibility of obtaining a solid plate from waste cable sheaths, by mechanical recycling, i.e., grinding, plasticising and pressing, is discussed-waste cable sheaths being pure PVC with a slight admixture of silicone. Press moulding was carried out under the following conditions: temperature 135 °C, heating duration 1 h and applied pressure 10 MPa. The yield point of the obtained solid plate obtained was 15.0 + -0.6 MPa, flexural strength 0.94 MPa, yield point 0.47 MPa and Charpy's impact strength 5.1 kJ/m2. The resulting solid plate does not differ significantly from the input material, in terms of mechanical strength, so, from the point of view of strength, that is, from a technical point of view, such promising processing of waste cables can be carried out successfully in industrial practice.
Collapse
Affiliation(s)
- Maciej Wędrychowicz
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Z. Szafrana Street 4, 65-516 Zielona Góra, Poland
| | - Władysław Papacz
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Z. Szafrana Street 4, 65-516 Zielona Góra, Poland
| | - Janusz Walkowiak
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Z. Szafrana Street 4, 65-516 Zielona Góra, Poland
| | - Adam Bydałek
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Z. Szafrana Street 4, 65-516 Zielona Góra, Poland
| | - Andrzej Piotrowicz
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Z. Szafrana Street 4, 65-516 Zielona Góra, Poland
| | - Tomasz Skrzekut
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30-059 Cracow, Poland
| | - Jagoda Kurowiak
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Z. Szafrana Street 4, 65-516 Zielona Góra, Poland
| | - Piotr Noga
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30-059 Cracow, Poland
| | - Mirosław Kostrzewa
- Eko Harpoon Recycling sp. z o. o., Cząstków Mazowiecki 128, 05-152 Czosnów, Poland
| |
Collapse
|
26
|
Marotta A, Causa A, Salzano de Luna M, Ambrogi V, Filippone G. Tuning the Morphology of HDPE/PP/PET Ternary Blends by Nanoparticles: A Simple Way to Improve the Performance of Mixed Recycled Plastics. Polymers (Basel) 2022; 14:polym14245390. [PMID: 36559757 PMCID: PMC9782910 DOI: 10.3390/polym14245390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Due to a very low mixing entropy, most of the polymer pairs are immiscible. As a result, mixing polymers of different natures in a typical mechanical recycling process leads to materials with multiple interfaces and scarce interfacial adhesion and, consequently, with unacceptably low mechanical properties. Adding nanoparticles to multiphase polymeric matrices represents a viable route to mitigate this drawback of recycled plastics. Here, we use low amounts of organo-modified clay (Cloisite® 15A) to improve the performance of a ternary blend made of high-density polyethylene (HDPE), polypropylene (PP), and polyethylene terephtalate (PET). Rather than looking for the inherent reinforcing action of the nanofiller, this goal is pursued by using nanoparticles as a clever means to manipulate the micro-scale arrangement of the polymer phases. Starting from theoretical calculations, we obtained a radical change in the blend microstructure upon the addition of only 2-wt.% of nanoclay, with the obtaining of a finer morphology with an intimate interpenetration of the polymeric phases. Rather than on flexural and impact properties, this microstructure, deliberately promoted by nanoparticles, led to a substantial increase (>50 °C) of a softening temperature conventionally defined from dynamic-mechanical measurements.
Collapse
Affiliation(s)
- Angela Marotta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (INSTM Consortium–UdR Naples), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - Andrea Causa
- Pirelli Tyre S. p. A., R&D, Viale Piero e Alberto Pirelli 25, 20126 Milan, Italy
| | - Martina Salzano de Luna
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (INSTM Consortium–UdR Naples), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - Veronica Ambrogi
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (INSTM Consortium–UdR Naples), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - Giovanni Filippone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (INSTM Consortium–UdR Naples), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
- Correspondence:
| |
Collapse
|
27
|
Coba-Daza S, Carmeli E, Otaegi I, Aranburu N, Guerrica-Echevarria G, Kahlen S, Cavallo D, Tranchida D, Müller AJ. Effect of compatibilizer addition on the surface nucleation of dispersed polyethylene droplets in a self-nucleated polypropylene matrix. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Zhao Z, Zhou S, Quan L, Xia W, Fan Q, Zhang P, Chen Y, Tang D. Polypropylene Composites with Ultrahigh Low-Temperature Toughness by Tuning the Phase Morphology. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhongguo Zhao
- National and Local Engineering Laboratory for Slag Comprehensive Utilization and Environment Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong723000, China
| | - Shengtai Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu610065, China
| | - Lijun Quan
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an710072, China
| | - Weilong Xia
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an710072, China
| | - Qian Fan
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an710072, China
| | - Penghui Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an710072, China
| | - Yanhui Chen
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an710072, China
| | - Dahang Tang
- Central Research Institute, Kingfa Science and Technology Co., Ltd., Huangpu, Guangdong510663, China
| |
Collapse
|
29
|
Asymmetrically functionalized CNTs: preparation of polymer nanocomposites and investigation of interfacial properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Phase separation behaviors of polyethersulfone/ionic liquid blends and the correlation with the physical properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Wang K, Jin X, He X, Huang W, Tian Q, Fu Q, Yan W. Synthesis of Aluminum Phosphate-Coated Halloysite Nanotubes: Effects on Morphological, Mechanical, and Rheological Properties of PEO/PBAT Blends. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2896. [PMID: 36079933 PMCID: PMC9457796 DOI: 10.3390/nano12172896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Polymer blending has been widely used to fabricate polymeric films in the last decade due to its superior properties to a single component. In this study, an aluminum phosphate-coated halloysite nanotube (HNTs@AlPO4) was fabricated using a one-pot heterogeneous precipitation method, organically modified HNTs@AlPO4 (o-HNTs@AlPO4) was used to improve the performance of polyethylene oxide/poly(butylene adipate-co-terephthalate) (PEO/PBAT) blends, and the mechanical and rheological properties of the PEO/PBAT/o-HNTs@AlPO4 films were systematically discussed. According to our results, there is an optimal addition for adequate AlPO4 nanoparticle dispersion and coating on the surface of HNTs, and organic modification could improve the interfacial compatibility of HNTs@AlPO4 and the polymeric matrix. Moreover, o-HNTs@AlPO4 may serve as a compatibilizer between PEO and PBAT, and PEO/PBAT/o-HNTs@AlPO4 films have better mechanical and rheological properties than the PEO/PBAT blends without the o-HNTs@AlPO4 component.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Yan
- Correspondence: ; Tel.: +86-851-85400760
| |
Collapse
|
32
|
Seyedi M, Savchak M, Tiiara A, Luzinov I. Toward Mechanical Recycling of Polystyrene/Polypropylene Blends with Bottlebrush-Modified Graphene Oxide as a Compatibilizer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35074-35086. [PMID: 35876471 DOI: 10.1021/acsami.2c07459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The compatibilization of immiscible polystyrene/polypropylene (PS/PP) blends with virgin graphene oxide (GO-V) and GO modified with a bottlebrush reactive copolymer layer (GO-P) is reported. This practically important blend was chosen since, currently, PS and PP are recycled to a very low degree. The amphiphilic bottlebrush copolymer synthesized by us contained hydrophobic and hydrophilic side chains and was attached to the GO nanosheets via epoxy functionality. The GO modification and the introduction of GO into the blend were conducted from water. Thus, the introduction of the compatibilizing nanomaterial can be conducted during the mechanical recycling washing stage in a real-world situation. The final blend was prepared via melt mixing using an extruder. We examined the influence of GO modification and the mixing order on the blends' morphology, rheology, and mechanical properties. Thermodynamic calculations predicted a higher interfacial activity of GO nanosheets in PS/PP/GO-P blends than that in PS/PP/GO-V blends. The morphological and rheological study assessed this prediction. It was demonstrated that the bottlebrush-modified GO-P sheets were readily driven to the PS/PP interphase. The mechanical measurements showed enhanced mechanical properties for PS/PP/GO-P blends, especially for those in which GO was first premixed with PS.
Collapse
Affiliation(s)
- Mastooreh Seyedi
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Mykhailo Savchak
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Andrii Tiiara
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Igor Luzinov
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
33
|
|
34
|
Naffakh M, Shuttleworth PS. Investigation of the Crystallization Kinetics and Melting Behaviour of Polymer Blend Nanocomposites Based on Poly(L-Lactic Acid), Nylon 11 and TMDCs WS 2. Polymers (Basel) 2022; 14:2692. [PMID: 35808736 PMCID: PMC9269272 DOI: 10.3390/polym14132692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this work was to study the crystallization kinetics and melting behaviour of polymer blend nanocomposites based on poly (L-lactic acid) (PLLA), nylon 11 and tungsten disulfide nanotubes (INT-WS2), which are layered transition metal dichalcogenides (TMDCs), using non-isothermal differential scanning calorimetry (DSC). Blends containing different nylon 11 contents ranging from 20 to 80 wt.% with or without INT-WS2 were prepared by melt mixing. Evaluation of their morphology with high-resolution SEM imaging proved that the incorporation of inorganic nanotubes into the immiscible PLLA/nylon 11 mixtures led to an improvement in the dispersibility of the nylon 11 phase, a reduction in its average domain size and, consequently, an increase in its interfacial area. The crystallization temperatures of these PLLA/nylon 11-INT blends were influenced by the cooling rate and composition. In particular, the DSC results appear to demonstrate that the 1D-TMDCs WS2 within the PLLA/nylon 11-INT blend nanocomposites initiated nucleation in both polymeric components, with the effect being more pronounced for PLLA. Moreover, the nucleation activity and activation energy were calculated to support these findings. The nucleation effect of INT-WS2, which influences the melting behaviour of PLLA, is highly important, particularly when evaluating polymer crystallinity. This study opens up new perspectives for the development of advanced PLA-based nanomaterials that show great potential for ecological and biomedical applications.
Collapse
Affiliation(s)
- Mohammed Naffakh
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Peter S. Shuttleworth
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
| |
Collapse
|
35
|
Ma YM, Gao FX, Zhang SL. Crystalline, Rheological and Mechanical Enhancement in PBAT/PPC/Silica Nanocomposites with Double Percolation Network. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Varyan I, Tyubaeva P, Kolesnikova N, Popov A. Biodegradable Polymer Materials Based on Polyethylene and Natural Rubber: Acquiring, Investigation, Properties. Polymers (Basel) 2022; 14:2457. [PMID: 35746033 PMCID: PMC9230834 DOI: 10.3390/polym14122457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
The growing amount of synthetic polymeric materials is a great environmental problem that has to be solved as soon as possible. The main factor aggravating this problem is the abundance of products made from traditional synthetic polymer, such as packaging materials, cases, containers and other equipment with a short period of use, which quickly turns into polymer waste that pollutes the ecosystem for decades. In this paper, we consider the possibility of solving this problem by the development of biodegradable compositions based on polyolefins and elastomers. The addition of a natural component (natural rubber) to the matrix of the synthetic polymeric (polyethylene) leads to the significant changes in structure and properties of the material. Different aspects of mixing semicrystalline and amorphous polymers are discussed in the article. It was shown that addition of 10-50% wt. of the elastomers to the synthetic polymer increases wettability of the material, slightly reduces the mechanical properties, significantly affects the supramolecular structure of the crystalline phase of polyethylene and initiates microbiological degradation. In particular, in this work, the acquisition, structure and properties of biodegradable binary composites based on low-density polyethylene (LDPE) and natural rubber (NR) were studied. It has been shown that such compositions are biodegradable in soil under standard conditions.
Collapse
Affiliation(s)
- Ivetta Varyan
- Joint Research Center, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (P.T.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia;
| | - Polina Tyubaeva
- Joint Research Center, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (P.T.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia;
| | - Natalya Kolesnikova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia;
| | - Anatoly Popov
- Joint Research Center, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (P.T.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia;
| |
Collapse
|
37
|
Guan J, Yang Y, Tang B, Shen X, Li Y. The synthesis of functional Janus nanosheets as compatibilizers for the immiscible polyamide 6 /polystyrene (PA6/PS): Formation of the nanosilica monolayer at the interface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Compatibilization strategies and analysis of morphological features of Poly(Butylene Adipate-Co-Terephthalate) (PBAT)/Poly(Lactic Acid) PLA blends: a state-of-art review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Kost B, Basko M, Bednarek M, Socka M, Kopka B, Łapienis G, Biela T, Kubisa P, Brzeziński M. The influence of the functional end groups on the properties of polylactide-based materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Utilization of modified polymeric composite supported crown ether for selective sorption and separation of various beta emitting radionuclides in simulated waste. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Relationship between Localization of PBSU in Interlamellar/Interfibrillar Regimes and Double Peaks in DSC/SAXS in its Blend with PVDF. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Recycling of Pretreated Polyolefin-Based Ocean-Bound Plastic Waste by Incorporating Clay and Rubber. RECYCLING 2022. [DOI: 10.3390/recycling7020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plastic waste found in oceans has become a major concern because of its impact on marine organisms and human health. There is significant global interest in recycling these materials, but their reclamation, sorting, cleaning, and reprocessing, along with the degradation that occurs in the natural environment, all make it difficult to achieve high quality recycled resins from ocean plastic waste. To mitigate these limitations, various additives including clay and rubber were explored. In this study, we compounded different types of ocean-bound (o-HDPE and o-PP) and virgin polymers (v-LDPE and v-PS) with various additives including a functionalized clay, styrene-multi-block-copolymer (SMB), and ethylene-propylene-based rubber (EPR). Physical observation showed that all blends containing PS were brittle due to the weak interfaces between the polyolefin regions and the PS domains within the polymer blend matrix. Blends containing clay showed rough surfaces and brittleness because of the non-uniform distribution of clay particles in the polymer matrix. To evaluate the properties and compatibility of the blends, characterizations using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and small-amplitude oscillatory shear (SAOS) rheology were carried out. The polymer blend (v-LDPE, o-HDPE, o-PP) containing EPR showed improved elasticity. Incorporating additives such as rubber could improve the mechanical properties of polymer blends for recycling purposes.
Collapse
|
43
|
Wang FJ, Wang LQ, Zhang XC, Ma SF, Zhao ZC. Enhancement of oil resistance of cellulose packaging paper for food application by coating with materials derived from natural polymers. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
44
|
Hu L, Han Y, Rong C, Wang X, Wang H, Li Y. Interfacial Engineering with Rigid Nanoplatelets in Immiscible Polymer Blends: Interface Strengthening and Interfacial Curvature Controlling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11016-11027. [PMID: 35171566 DOI: 10.1021/acsami.1c24817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interfacial nanoparticle compatibilization (INC) strategy has opened up a promising avenue toward simultaneous functionalization and interfacial engineering of immiscible polymer blends. While the INC mechanism has been well developed recently, few investigations have focused on rigid nanoplatelets because of the inherent steric hindrance of the surface-grafted polymer chains. Herein, surface-modified rigid nanoplatelets have been incorporated into an immiscible poly(l-lactide) (PLLA)/poly(butylene succinate) (PBSU) blend. It is demonstrated that the strong interfacial adhesion between PLLA and PBSU phases is promoted via molecular entanglements of the grafted chains on the surface of nanoplatelets with the individual components. A refined phase morphology with improved mechanical properties can be achieved with the addition of 5 wt % modified Gibbsite nanoplatelets. It was further found that the stiffness of nanoplatelets can change the geometry of the interface significantly. It is, therefore, indicated that the simultaneous interface strengthening and interfacial curvature controlling of rigid nanoplatelets originate from the selective swelling/collapse of the in situ-formed PLLA and PBSU grafts within the corresponding phase at the interface. Such a mechanism is confirmed by the Monte Carlo simulations. This work provides new opportunities for the fabrication of advanced polymer blend nanocomposites.
Collapse
Affiliation(s)
- Lingmin Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yuanyuan Han
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, People's Republic of China
| | - Chenyan Rong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xiaokan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
45
|
Embedded Target Filler and Natural Fibres as Interface Agents in Controlling the Stretchability of New Starch and PVOH-Based Materials for Rethinked Sustainable Packaging. MATERIALS 2022; 15:ma15041377. [PMID: 35207918 PMCID: PMC8874383 DOI: 10.3390/ma15041377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023]
Abstract
A structuring solution converting starch into a multiphase polymeric material was obtained through a melt compounding sequence, which can be irreversibly shaped by thermoforming into rethinked, sustainable packaging, based on the physical modification of starch with polyvinyl alcohol (PVOH), target fillers, (CaCO3 and wood flour), and a good plasticizer compatible with the polar components. Polymeric material can be thermoformed if it can be stretched without breaking in the positive temperature range, have functional properties required by the application, and keep its shape and properties after stretching for more than six months. The properties of the selected quaternary starch-based compound, fulfil the requirements for a thermoformable polymeric material due to the chemical compatibility between the components and the compounding in a selected procedure and optimal conditions wich ensure a comfortable miscibility . Most likely, the obtained miscibility can be explained only by the arrangement of the wood flour at the interface, where it acts as compatibilizer with a main role in structuring the new starch-based materials. The compatibilizer role of the wood flour was proved for the quaternary selected blend by the changing of the thermal degradation mechanism, from one with two stages for binary and tertiary blends, to one consisting of a single stage: decreasing till elimination of morphological defects, the reproducibility of the mechanical properties, stretching without breaking, and dimensional stability after stretching. Future studies will aim to achieve revised packaging for applications that require higher strength properties.
Collapse
|
46
|
He H, Gao J, Wang Y, Zhu Z, Liu Y, Tian G, Xu L, Huang Z. Toughening and reinforcing waste polypropylene with
POE
/
nano‐SiO
2
under elongational flow. J Appl Polym Sci 2022. [DOI: 10.1002/app.52151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hezhi He
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing South China University of Technology Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing South China University of Technology Guangzhou China
| | - Jun Gao
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing South China University of Technology Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing South China University of Technology Guangzhou China
| | - Yi Wang
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing South China University of Technology Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing South China University of Technology Guangzhou China
| | - Zhiwen Zhu
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing South China University of Technology Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing South China University of Technology Guangzhou China
| | - Yufan Liu
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing South China University of Technology Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing South China University of Technology Guangzhou China
| | - Guidong Tian
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing South China University of Technology Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing South China University of Technology Guangzhou China
| | - Li Xu
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing South China University of Technology Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing South China University of Technology Guangzhou China
| | - Zhaoxia Huang
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing South China University of Technology Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing South China University of Technology Guangzhou China
| |
Collapse
|
47
|
Fabrication of PLA/PCL/Graphene Nanoplatelet (GNP) Electrically Conductive Circuit Using the Fused Filament Fabrication (FFF) 3D Printing Technique. MATERIALS 2022; 15:ma15030762. [PMID: 35160709 PMCID: PMC8836401 DOI: 10.3390/ma15030762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023]
Abstract
For the purpose of fabricating electrically conductive composites via the fused filament fabrication (FFF) technique whose properties were compared with injection-moulded properties, poly(lactic acid) (PLA) and polycaprolactone (PCL) were mixed with different contents of graphene nanoplatelets (GNP). The wettability, morphological, rheological, thermal, mechanical, and electrical properties of the 3D-printed samples were investigated. The microstructural images showed the selective localization of the GNPs in the PCL nodules that are dispersed in the PLA phase. The electrical resistivity results using the four-probes method revealed that the injection-moulded samples are insulators, whereas the 3D-printed samples featuring the same graphene content are semiconductors. Varying the printing raster angles also exerted an influence on the electrical conductivity results. The electrical percolation threshold was found to be lower than 15 wt.%, whereas the rheological percolation threshold was found to be lower than 10 wt.%. Furthermore, the 20 wt.% and 25 wt.% GNP composites were able to connect an electrical circuit. An increase in the Young’s modulus was shown with the percentage of graphene. As a result, this work exhibited the potential of the FFF technique to fabricate biodegradable electrically conductive PLA-PCL-GNP composites that can be applicable in the electronic domain.
Collapse
|
48
|
Panahi-Sarmad M, Noroozi M, Xiao X, Park CB. Recent Advances in Graphene-Based Polymer Nanocomposites and Foams for Electromagnetic Interference Shielding Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mahyar Panahi-Sarmad
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Mina Noroozi
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Xueliang Xiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chul B. Park
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
49
|
Kunjappan AM, Reghunadhan A, Ramachandran AA, Mathew L, Padmanabhan M, Laroze D, Thomas S. Thin and efficient
EMI
shielding materials from binary thermoplastic blend nanocomposites. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aswathi Madathinal Kunjappan
- International and Interuniversity Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala India
| | - Arunima Reghunadhan
- International and Interuniversity Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala India
- Department of Chemistry TKM College of Engineering Kollam Kerala India
| | - Ajitha A. Ramachandran
- International and Interuniversity Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala India
- Department of Chemistry MES College Aluva Kerala India
| | - Lovely Mathew
- International and Interuniversity Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala India
- Carmelgiri College Idukki Kerala India
| | | | - David Laroze
- Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá Arica Chile
| | - Sabu Thomas
- International and Interuniversity Centre for Nanoscience and Nanotechnology Mahatma Gandhi University Kottayam Kerala India
- School of Energy Materials Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
50
|
Khan R, Haider S, Razak SIA, Haider A, Khan MUA, Wahit MU, Bukhari N, Ahmad A. Recent advances in renewable polymer/metal oxide systems used for tissue engineering. RENEWABLE POLYMERS AND POLYMER-METAL OXIDE COMPOSITES 2022:395-445. [DOI: 10.1016/b978-0-323-85155-8.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|