1
|
Phillips AT, Hoang JD, White TJ. Helical pitch and thickness-dependent opto-mechanical response in cholesteric liquid crystal elastomers. SOFT MATTER 2025. [PMID: 39989422 DOI: 10.1039/d5sm00059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cholesteric liquid crystalline elastomers (CLCEs) are selectively reflective, deformable materials. We prepared CLCEs with selective reflection spanning the electromagnetic spectrum, from the visible to the mid-wave infrared (MWIR). Within these CLCEs, we systematically investigate the opto-mechanical response and expand upon observations detailed in our previous study where CLCEs with comparatively long pitch lengths do not exhibit total reflection in response to deformation (i.e., mechanically induced depolarization of the selective reflection). By systematically varying the pitch length and/or thickness of the CLCEs we isolate that total reflection in CLCEs is dependent on the number of helical pitches (Np). Optical characterization, including polarized optical microscopy (POM), UV-vis, and FTIR spectroscopy, is complemented by X-ray scattering to uncover the mechanical origins. The tunable and reversible optical properties of CLCEs position them as promising candidates for adaptive optics, sensors, tunable reflectors, and reconfigurable photonic devices.
Collapse
Affiliation(s)
- Alexis T Phillips
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Jonathan D Hoang
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado, USA.
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
2
|
Lin L, Li W, Wang X, Xie Y, Li Y, Wu Z. Functional Liquid Crystal Core/Hydrogel Shell Microcapsules for Monitoring Live Cells in a 3D Microenvironment. Anal Chem 2023; 95:2750-2756. [PMID: 36599406 DOI: 10.1021/acs.analchem.2c03762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three-dimensional (3D) cell culture, even as a simple microspheroid model, can be used to recapitulate the native biological microenvironment of cells. Examining the biochemical characteristics of cells in multicellular hydrogel microspheroids using microsensors is usually limited to monitoring the medium around the microspheroids. Here, functional liquid crystal (LC) core/hydrogel shell microcapsules loaded with cells were prepared using droplet microfluidic technology for monitoring live cells in a 3D microenvironment. These microcapsules have a distinctive core/shell structure; cells can be cultured in the hydrogel shell of this 3D model. The functional LC core responds to the acidic microenvironment of cells, showing an axial-to-bipolar transfiguration. 3D cell culture and visual monitoring of the cell microenvironment can be simultaneously achieved in a single microcapsule. Therefore, this novel method may enable a standard approach for monitoring multiple ions or molecules in a 3D model of the cell microenvironment.
Collapse
Affiliation(s)
- Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Xiaorui Wang
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yaoshuang Xie
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxuan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Zengnan Wu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Wei Q, Lv P, Zhang Y, Zhang J, Qin Z, de Haan LT, Chen J, Wang D, Xu BB, Broer DJ, Zhou G, Ding L, Zhao W. Facile Stratification-Enabled Emergent Hyper-Reflectivity in Cholesteric Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57235-57243. [PMID: 36520981 DOI: 10.1021/acsami.2c16938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cholesteric liquid crystals (CLCs) are chiral photonic materials with selective reflection in terms of wavelength and polarization. Helix engineering is often required in order to produce desired properties for CLC materials to be employed for beam steering, light diffraction, scattering, and adaptive or broadband reflection. Here, we demonstrate a novel photopolymerization-enforced stratification (PES)-based strategy to realize helix engineering in a chiral CLC system with initially one handedness of molecular rotation throughout the layer. PES plays a crucial role in driving the chiral dopant bundle consisting of two chiral dopants of opposite handedness to spontaneously phase separate and create a CLC bilayer structure that reflects left- and right-handed circularly polarized light (CPL). The initially hidden chiral information therefore becomes explicit, and hyper-reflectivity, i.e., reflecting both left- and right-handed CPL, successfully emerges from the designed CLC mixture. The PES mechanism can be applied to structure a wide range of liquid crystal (LC) and polymer materials. Moreover, the engineering strategy enables facile programming of the center wavelength of hyper-reflection, patterning, and incorporating stimuli-responsiveness in the optical device. Hence, the engineered hyper-reflective CLCs offer great promise for future applications, such as digital displays, lasing, optical storage, and smart windows.
Collapse
Affiliation(s)
- Qunmei Wei
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
| | - Pengrong Lv
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Yang Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiwen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
| | - Zhuofan Qin
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Laurens T de Haan
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawen Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Ding Wang
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Dirk J Broer
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd., Shenzhen 518110, P. R. China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Zhao
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Naphthalene-Based Oxime Esters as Type I Photoinitiators for Free Radical Photopolymerization. Polymers (Basel) 2022; 14:polym14235261. [PMID: 36501655 PMCID: PMC9735988 DOI: 10.3390/polym14235261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
In order to discuss the polymerization effect from the substituted position and methoxy group of Type I photinitiators, a series of naphthalene-based oxime esters was designed and synthesized. Compared to the 2-naphthalene-substituted compound, the UV absorption region of the 1-naphthalene-based compound was greatly improved. In addition, the methoxy substitution exhibited longer absorption characteristics than did the methoxy-free one. The photochemical reaction behavior of these novel compounds was also studied by photolysis, cyclic voltammetry (CV), and electron spin resonance (ESR) experiments. Finally, the initiation abilities of naphthalene-based oxime esters toward trimethylolpropane triacrylate (TMPTA) monomer were conducted through the photo-DSC instrument under UV and a 405@nm LED lamp. Remarkedly, the naphthalene-based oxime ester (NA-3) that contains 1-naphthalene with o-methoxy substituent showed the rather red-shifted absorption region with the highest final conversion efficiency under UV (46%) and 405@nm LED (41%) lamp irradiation.
Collapse
|
5
|
Lucchetta DE, Di Donato A, Francescangeli O, Singh G, Castagna R. Light-Controlled Direction of Distributed Feedback Laser Emission by Photo-Mobile Polymer Films. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2890. [PMID: 36079928 PMCID: PMC9458089 DOI: 10.3390/nano12172890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 05/14/2023]
Abstract
We report on the realization of Distributed Feedback (DFB) lasing by a high-resolution reflection grating integrated in a Photomobile Polymer (PMP) film. The grating is recorded in a recently developed holographic mixture basically containing halolakanes/acrylates and a fluorescent dye molecule (Rhodamine 6G). The PMP-mixture is placed around the grating spot and a subsequent curing/photo-polymerization process is promoted by UV-irradiation. Such a process brings to the simultaneous formation of the PMP-film and the covalent link of the PMP-film to the DFB-grating area (PMP-DFB system). The PMP-DFB allows lasing action when optically pumped with a nano-pulsed green laser source. Moreover, under a low-power light-irradiation the PMP-DFB bends inducing a spatial readdressing of the DFB-laser emission. This device is the first example of a light-controlled direction of a DFB laser emission. It could represent a novel disruptive optical technology in many fields of Science, making feasible the approach to free standing and light-controllable lasers.
Collapse
Affiliation(s)
| | - Andrea Di Donato
- Dip. DII, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Oriano Francescangeli
- Dip. SIMAU, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Gautam Singh
- Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, Noida 201313, India
| | - Riccardo Castagna
- URT-CNR, Università di Camerino (UNICAM), Polo di Chimica, Via Sant’Agostino, 1, 62032 Camerino, Italy
- CNR, Institute of Heritage Science, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Zhang X, Jiang S, Lin G, Guo H, Yang F. Novel fluorescent columnar liquid crystal based on tetraphenylethylene- rufigallol-tetraphenylethylene triads. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Yang X, Gu M, Wei Q, Zhang Y, Wu S, Wu Q, Hu X, Zhao W, Zhou G. Photo-Embossed Surface Relief Structures with Improved Aspect Ratios and Their Applications in Liquid Crystal Devices. Polymers (Basel) 2022; 14:polym14010171. [PMID: 35012193 PMCID: PMC8747292 DOI: 10.3390/polym14010171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Photo-embossing has been developed as a convenient and economical method for creating complex surface relief structures in polymer films. The pursuit for large aspect ratios of the photo-embossed structures has never stopped. Here, we demonstrate a simple strategy to obtain improved aspect ratios by adding a quick solvent developing step into the photo-embossing process. A good solvent for the monomer is used to remove unreacted monomers from the unexposed region, resulting in deepened valleys of the surface reliefs. In a polymer film as thin as 2.5 µm, the height of the surface reliefs can be increased by a factor of three to around 1.0 µm. This strategy is also shown to be compatible with other methods used to improve the aspect ratios of the photo-embossed structures. Lastly, we employ these surface relief structures in the fabrication of liquid crystal (LC) devices and investigate their performances for visible light regulation.
Collapse
Affiliation(s)
- Xiulan Yang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (X.Y.); (M.G.); (Q.W.); (Y.Z.); (S.W.); (X.H.); (G.Z.)
| | - Minzhao Gu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (X.Y.); (M.G.); (Q.W.); (Y.Z.); (S.W.); (X.H.); (G.Z.)
| | - Qunmei Wei
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (X.Y.); (M.G.); (Q.W.); (Y.Z.); (S.W.); (X.H.); (G.Z.)
| | - Yang Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (X.Y.); (M.G.); (Q.W.); (Y.Z.); (S.W.); (X.H.); (G.Z.)
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Sihan Wu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (X.Y.); (M.G.); (Q.W.); (Y.Z.); (S.W.); (X.H.); (G.Z.)
| | - Qin Wu
- Zhuhai Singyes New Materials Technology Co., Ltd., No. 9 Jinzhu Road, Technology Innovation Coast, High-Tech Development Zone, Jinding Town, Zhuhai 519000, China;
| | - Xiaowen Hu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (X.Y.); (M.G.); (Q.W.); (Y.Z.); (S.W.); (X.H.); (G.Z.)
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wei Zhao
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (X.Y.); (M.G.); (Q.W.); (Y.Z.); (S.W.); (X.H.); (G.Z.)
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Correspondence:
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (X.Y.); (M.G.); (Q.W.); (Y.Z.); (S.W.); (X.H.); (G.Z.)
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Shenzhen Guohua Optoelectronics Tech. Co., Ltd., Shenzhen 518110, China
| |
Collapse
|
8
|
Wang Y, Hao X, Peng H, Zhou X, Xie X. Advances on holographic polymer nanocomposites. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Shen Y, Wang Y, Hamley IW, Qi W, Su R, He Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Wang X, He J, Wei Q, Zhang Y, Li Y, Zhang Z, Zhao W, Zhou G. Influence of molecular weight on helical twisting power of oligomer chiral dopants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|