1
|
Gulati A, Ghaffari S, MacNeil BD, Price RB. Effect of beam divergence on the irradiance from dental light curing units. Dent Mater 2025; 41:432-443. [PMID: 39894727 DOI: 10.1016/j.dental.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVE This study measured the beam divergence angle and light output from dental light curing units (LCUs). Twenty LCUs were assessed using a laboratory-grade wide beam imager to determine the relationship between the beam divergence on the irradiance as a function of distance from the light tip. METHODS The irradiance (mW/cm2) and beam divergence angles (°) at 5, and 10 mm from the tips of 18 Light-Emitting Diode (LEDs), 1 Quartz-Tungsten-Halogen (QTH), and 1 Laser diode LCU. RESULTS There were significant differences in the power, irradiance, and emission spectra from the 20 LCUs. At 10 mm from the LCU tip, the irradiance delivered by one LCU decreased by approximately 85.7 %, whereas this decrease was as low as 5.6 % for a different LCU. There was a positive correlation between the divergence angle reported by the wide beam imager and the reduction in irradiance. The laser diode LCU had the least beam divergence and the smallest decrease in irradiance as the distance increased. In contrast, the QTH LCU with the turbo light guide had the greatest beam divergence and the greatest reduction in irradiance as the distance increased. 50 % of the LCUs tested would require exposure times longer than 20 s to deliver 10 J/cm2 at the 10 mm distance. SIGNIFICANCE The wide beam imager is a useful tool for measuring the beam divergence from LCUs and predicting the effect of distance on their irradiance. At 10 mm, some LCUs may require a fivefold increase in the exposure time to deliver the same energy they deliver at 0 mm from the tip of the LCU.
Collapse
Affiliation(s)
- Anubhav Gulati
- Department of Dental Clinical Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Soheil Ghaffari
- Department of Dental Clinical Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brett Daniel MacNeil
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard Bengt Price
- Department of Dental Clinical Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
2
|
Marovic D, Par M, Daničić P, Marošević A, Bojo G, Alerić M, Antić S, Puljić K, Badovinac A, Shortall AC, Tarle Z. The Role of Rapid Curing on the Interrelationship Between Temperature Rise, Light Transmission, and Polymerisation Kinetics of Bulk-Fill Composites. Int J Mol Sci 2025; 26:2803. [PMID: 40141448 PMCID: PMC11942995 DOI: 10.3390/ijms26062803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The first seconds of light curing are crucial for the development of most properties of dental composites, especially for the 3s high-irradiance curing. This study investigated the influence of rapid high-irradiance curing on temporal development of temperature, transmittance and conversion of bulk-fill composites. Four materials were tested: Filtek One (FO), Tetric PowerFill (PFill), Tetric PowerFlow (PFlow) and SDR flow+ (SDR+) and cured with three curing units (LCU): Valo Cordles, Bluephase PowerCure and Translux Wave in 3s (3 W/cm2), 10s (1 W/cm2) and 20s (1 W/cm2) curing protocols. Light transmittance was measured at 2 and 4 mm, while temperature rise and polymerisation kinetics were evaluated at 4 mm depth during 5 min. Both light transmittance and temperature rise were greatest for SDR+ > PFlow > PFill > FO. The 20s curing protocol resulted in the highest degree of conversion (DC) for all materials and LCUs, but also contributed to the greatest temperature rise. Rapid curing with the 3s protocol caused the lowest temperature rise and the shortest time to reach maximum temperature. The polymerisation and temperature kinetics were strongly dependent on the material. The DC of PFill was statistically similar for 3s, 10s or 20s curing with BPC. Rapid curing is only recommended for materials developed for this purpose.
Collapse
Affiliation(s)
- Danijela Marovic
- University of Zagreb School of Dental Medicine, Gundulićeva 5, 10 000 Zagreb, Croatia; (G.B.); (M.A.); (S.A.); (A.B.); (Z.T.)
| | - Matej Par
- University of Zagreb School of Dental Medicine, Gundulićeva 5, 10 000 Zagreb, Croatia; (G.B.); (M.A.); (S.A.); (A.B.); (Z.T.)
| | | | | | - Gloria Bojo
- University of Zagreb School of Dental Medicine, Gundulićeva 5, 10 000 Zagreb, Croatia; (G.B.); (M.A.); (S.A.); (A.B.); (Z.T.)
| | - Marta Alerić
- University of Zagreb School of Dental Medicine, Gundulićeva 5, 10 000 Zagreb, Croatia; (G.B.); (M.A.); (S.A.); (A.B.); (Z.T.)
| | - Svenia Antić
- University of Zagreb School of Dental Medicine, Gundulićeva 5, 10 000 Zagreb, Croatia; (G.B.); (M.A.); (S.A.); (A.B.); (Z.T.)
| | - Krunoslav Puljić
- University of Zagreb Faculty of Economics & Business, Trg J. F. Kennedyja 6, 10 000 Zagreb, Croatia;
| | - Ana Badovinac
- University of Zagreb School of Dental Medicine, Gundulićeva 5, 10 000 Zagreb, Croatia; (G.B.); (M.A.); (S.A.); (A.B.); (Z.T.)
| | - Adrian C. Shortall
- School of Dentistry, The University of Birmingham, Birmingham B15 2TT, UK;
| | - Zrinka Tarle
- University of Zagreb School of Dental Medicine, Gundulićeva 5, 10 000 Zagreb, Croatia; (G.B.); (M.A.); (S.A.); (A.B.); (Z.T.)
| |
Collapse
|
3
|
Peres TS, Oliveira G, da Silva Sakamoto SP, da Silva Faria M, Carlo HL, Soares CJ. Effect of Battery Level During Successive Charging Cycles on the Performance of Certified and Low-cost Uncertified Light-curing Units Available on E-commerce. Oper Dent 2024; 49:673-681. [PMID: 39407435 DOI: 10.2341/23-177-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVE To evaluate the influence of battery level on power (mW), emission spectrum (mW/cm2/ nm), and light distribution on the active tip (mW/ cm2) of certified (FDA/ANVISA) and low-cost uncertified light-curing units (LCUs) purchased through e-commerce. METHODS Seven LCUs, three certified: VALO Grand (Ultradent); Radii Xpert (SDI); and LED.B (Woodpecker); and four uncertified: 1 Sec; BS 300; LED curing light; and VAFU (VRN, AZDENT), were used. The LCUs were evaluated by calculating the power (mW) after each sequential five exposure cycles of 20 seconds and the emission spectrum (mW/cm2/nm) in the initial and final cycles, using an integrating sphere during three battery charging cycles. Beam profiling was used to check the light distribution on the LCU tip after every 50 exposure cycles until the battery fully discharged. Data were analyzed by linear regression between power and the number of exposure times (R2). RESULTS The certified LCUs VALO Grand (R2=0.005), LED.B (R2=0.02), and Radii Xpert (R2=0.09) and the uncertified LCU VAFU (R2=0.002) had no significant power reduction during the three battery charging cycles. The uncertified LCUs BS 300 (R2=0.87), 1 Sec (R2=0.60), and LED curing light (R2=0.83) showed significant power reduction, decreasing the emission spectrum (mW/cm2/nm) at the end of the battery charging cycle. The light distribution on the active tip across the level battery was modified significantly with successive exposure times. CONCLUSIONS The certified LCUs (VALO Grand, Radii Xpert, and LED.B) and uncertified LCU (VAFU), maintained power, emission spectrum, and light distributions during the tested battery life cycles. Low-cost certified LCU LED.B exhibited inhomogeneous light concentrated at the center of the tip. Low-cost uncertified LCUs-BS 300, 1 Sec, and LED curing light-had significant power reductions during the battery cycles and increased inhomogeneous light distribution along the successive exposure times.
Collapse
Affiliation(s)
- T S Peres
- Thiago Silva Peres, DDS MSc, PhD student, Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - G Oliveira
- Gabriella Oliveira, DDS, MSc student, Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - S P da Silva Sakamoto
- Silvio Pedro da Silva Sakamoto, DDS, Department of Operative Dentistry, University of Rio Verde, Rio Verde, Goiás, Brazil
| | - M da Silva Faria
- Mallú da Silva Faria, DDS, Department of Operative Dentistry, University of Rio Verde, Rio Verde, Goiás, Brazil
| | - H L Carlo
- Hugo Lemes Carlo, DDS MSc, PhD, professor, Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - C J Soares
- *Carlos J Soares, DDS, MSc, PhD, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
4
|
Klarić E, Bosnić JV, Par M, Tarle Z, Marovic D. One-Year Evaluation of High-Power Rapid Curing on Dentin Bond Strength. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2297. [PMID: 38793364 PMCID: PMC11122907 DOI: 10.3390/ma17102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
This study investigated the effect of 3 s light-curing with a high-power LED curing unit on the shear bond strength of bulk-fill composites. Four bulk-fill composites were bonded to dentin with a universal adhesive (Scotchbond Universal Plus): two materials designed for rapid curing (Tetric PowerFill and Tetric PowerFlow) and two controls (Filtek One Bulk Fill Restorative and SDR Plus Bulk Fill Flowable). The 4 mm composite layer was light-cured with Bluephase PowerCure for 20 s at 1000 mW/cm2 ("20 s") or for 3 s at 3000 mW/cm2 ("3 s"). The samples were stored at 37 °C in distilled water and tested after 1, 6 and 12 months. The samples polymerised in the "3 s" mode had statistically similar or higher bond strength than the samples cured in "20 s" mode, except for the Tetric PowerFlow (1 month) and SDR+ (6 month). The flowable materials Tetric PowerFlow and SDR Plus initially showed the highest values in the "3 s" and "20 s" groups, which decreased after 12 months. The bond strength was statistically similar for all materials and curing protocols after 12 months, except for Tetric PowerFill cured with the "3 s" protocol (21.22 ± 5.0 MPa), which showed the highest value. Tetric PowerFill showed the highest long-term bond strength. While "3 s" curing resulted in equal or better shear bond strength, its use can only be recommended for a material with an AFCT agent such as Tetric PowerFill.
Collapse
Affiliation(s)
- Eva Klarić
- Department of Endodontics and Restorative Dentistry, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia; (E.K.); (M.P.); (Z.T.)
| | | | - Matej Par
- Department of Endodontics and Restorative Dentistry, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia; (E.K.); (M.P.); (Z.T.)
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia; (E.K.); (M.P.); (Z.T.)
| | - Danijela Marovic
- Department of Endodontics and Restorative Dentistry, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia; (E.K.); (M.P.); (Z.T.)
| |
Collapse
|
5
|
Maletin A, Knežević MJ, Koprivica DĐ, Veljović T, Puškar T, Milekić B, Ristić I. Dental Resin-Based Luting Materials-Review. Polymers (Basel) 2023; 15:4156. [PMID: 37896400 PMCID: PMC10610675 DOI: 10.3390/polym15204156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
As cementation represents the last stage of the work involved in making various indirect restorations (metal ceramic crowns and bridges, full ceramic crowns and bridges, inlays, onlays, and fiber posts), its quality significantly contributes to the clinical success of the therapy performed. In the last two decades, the demand for ceramic indirect restorations in everyday dental practice has considerably increased primarily due to the growing significance of esthetics among patients, but also as a result of hypersensitivity reactions to dental alloys in some individuals. In this context, it is essential to ensure a permanent and reliable adhesive bond between the indirect restoration and the tooth structure, as this is the key to the success of aesthetic restorations. Resin-based luting materials benefit from excellent optical (aesthetic) and mechanical properties, as well as from providing a strong and durable adhesive bond between the restoration and the tooth. For this reason, resin cements are a reliable choice of material for cementing polycrystalline ceramic restorations. The current dental material market offers a wide range of resin cement with diverse and continually advancing properties. In response, we wish to note that the interest in the properties of resin-based cements among clinicians has existed for many years. Yet, despite extensive research on the subject and the resulting continued improvements in the quality of these materials, there is still no ideal resin-based cement on the market. The manuscript authors were guided by this fact when writing the article content, as the aim was to provide a concise overview of the composition, properties, and current trends, as well as some future guidelines for research in this field that would be beneficial for dental practitioners as well as the scientific community. It is extremely important to provide reliable and succinct information and guidelines for resin luting materials for dental dental practitioners.
Collapse
Affiliation(s)
- Aleksandra Maletin
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.J.K.); (D.Đ.K.); (T.V.); (T.P.); (B.M.)
| | - Milica Jeremić Knežević
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.J.K.); (D.Đ.K.); (T.V.); (T.P.); (B.M.)
| | - Daniela Đurović Koprivica
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.J.K.); (D.Đ.K.); (T.V.); (T.P.); (B.M.)
| | - Tanja Veljović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.J.K.); (D.Đ.K.); (T.V.); (T.P.); (B.M.)
| | - Tatjana Puškar
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.J.K.); (D.Đ.K.); (T.V.); (T.P.); (B.M.)
| | - Bojana Milekić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (M.J.K.); (D.Đ.K.); (T.V.); (T.P.); (B.M.)
| | - Ivan Ristić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| |
Collapse
|
6
|
Negovetic Mandic V, Par M, Marovic D, Rakić M, Tarle Z, Klarić Sever E. Blue Laser for Polymerization of Bulk-Fill Composites: Influence on Polymerization Kinetics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:303. [PMID: 36678057 PMCID: PMC9864537 DOI: 10.3390/nano13020303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The objective of this study was to compare the polymerization kinetics of bulk-fill resin composites cured with a LED-curing device and a diode laser (449 nm). Three bulk-fill composites were light-cured with constant radiation exposure at 10 J/cm2 by varying radiant exitance and curing time. The following three light-curing protocols were used: (I) 3300 mW/cm2 for 3 s; (II) 2000 mW/cm2 for 5 s; and (III) 1000 mW/cm2 for 10 s. The degree of conversion (DC) was monitored in real time at a data acquisition rate of 2 spectra/s over a 5-min period and again after seven days using Fourier transform infrared spectroscopy. DC amounted to 30.9-61.7% at 4-mm depth after 5 min. DC values of two sculptable composites were significantly higher with the laser, regardless of the curing protocol used, but not for the flowable composite. The maximum polymerization rate (2.0-22.1%/s) was less affected by the type of curing device for one of the composites, while the other two composites achieved significantly higher values when cured with the laser. Laser curing generally increased the DC and the maximum polymerization rate while it shortened the onset of the maximum reaction rate. New handheld laser devices with adjustable power have the potential to be used as a photopolymerization light source for new generations of bulk-fill composites.
Collapse
Affiliation(s)
- Visnja Negovetic Mandic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Danijela Marovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Eva Klarić Sever
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Babaier R, Haider J, Silikas N, Watts DC. Effect of CAD/CAM aesthetic material thickness and translucency on the polymerisation of light- and dual-cured resin cements. Dent Mater 2022; 38:2073-2083. [DOI: 10.1016/j.dental.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
|
8
|
Depth of cure of 10 resin-based composites light-activated using a laser diode, multi-peak, and single-peak light-emitting diode curing lights. J Dent 2022; 122:104141. [PMID: 35483497 DOI: 10.1016/j.jdent.2022.104141] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES To evaluate the depth of cure (DOC) of ten contemporary resin-based composites (RBCs), light-cured using different LCUs and exposure times. METHODS The power, radiant emittance, irradiance, radiant exposure (RE), and beam profiles from a laser (M, Monet), a multi-peak (V, Valo Grand), and single-peak (S, SmartLite Pro) LCU were measured. The DOC was measured using a 6-mm diameter metal mold and a solvent dissolution method to remove the uncured RBC. The length of the remaining RBC was divided by 2. The exposure times were: 1s and 3s for M, 10s and 20s for V, and 10s and 20s for S. Data were analyzed using: Bland-Altman distribution, Pearson's Correlation, and an artificial neural network (ANN) to establish the relative importance of the factors on the DOC (α=0.05; β=0.2). RESULTS Significant differences were found in the DOC of the different LCUs and composites. The laser LCU emitted the highest power, radiant emittance, and irradiance. However, this LCU used for 1 s delivered the lowest RE and produced the shortest DOC in all ten RBCs. The ANN demonstrated that the RE is the most critical factor for the DOC. Bland-Altman comparisons showed that the DOCs achieved with the laser LCU used for 1s were between 17 - 34 % shorter than the other conditions. CONCLUSIONS Although the laser LCU cured all 10 RBCs when used for 1s, it produced the shallowest DOC, and some RBCs did not achieve the minimum DOC threshold. The RE and not the irradiance was the most important factor in determining the DOC of RBCs. CLINICAL SIGNIFICANCE Despite delivering high power and irradiance, the laser used for l s delivered a lower radiant exposure than the conventional LCUs used for 10 s. This resulted in a shorter DOC.
Collapse
|