1
|
Ren J, Yu L, Lin J, Liu Y, Ma L, Huang Y, Sun N, Deng Y, Zhong D, Zhou B, Jiang B, Yan M. Elevated 18:1 lysophosphatidylcholine contributes to neuropathic pain in peripheral nerve injury. Reg Anesth Pain Med 2025:rapm-2024-106195. [PMID: 40016127 DOI: 10.1136/rapm-2024-106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Neuropathic pain is a maladaptive and chronic condition with limited effective treatments. Although recent studies have suggested that certain lipid metabolites, like lysophosphatidylcholine (LPC), may contribute to chronic pain, their specific roles and mechanisms remain unclear. OBJECTIVE This study investigated the role and mechanism of LPC(18:1), a lipid subtype, in neuropathic pain caused by nerve injury. METHODS Using a mouse model of spinal nerve ligation, LPC(18:1) levels were measured in serum, dorsal root ganglion (DRG), spinal cord (SC) and cerebrospinal fluid (CSF). Nociception was assessed using von Frey and Hargreaves' methods, while molecular analyses explored inflammatory pathways and oxidative stress. RESULTS LPC(18:1) levels significantly increased in the serum, DRG and CSF after nerve injury. Administration of LPC(18:1) induced heightened pain responses and activated inflammatory pathways, including protein kinase C (PKC) and extracellular regulated protein kinase (ERK) in the DRG, as well as glial cells in the SC. The findings suggested that oxidative stress played a role in LPC(18:1) production, and its effects were mediated by G protein-coupled receptor 132 (GPR132). CONCLUSION LPC(18:1) may serve as a potential biomarker and therapeutic target for managing neuropathic pain.
Collapse
Affiliation(s)
- Jinxuan Ren
- Department of Anesthesiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Lina Yu
- Department of Anesthesiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jiaqi Lin
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Shanghai, China
| | - Ying Liu
- Department of Anesthesiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Longfei Ma
- Department of Anesthesiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Yangyuxin Huang
- Department of Anesthesiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Na Sun
- Department of Anesthesiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Yutao Deng
- Department of Anesthesiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Da Zhong
- Department of Anesthesiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Binglin Zhou
- Department of Anesthesiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Baochun Jiang
- Department of Anesthesiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Min Yan
- Department of Anesthesiology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Prostanoid Receptor Subtypes and Its Endogenous Ligands with Processing Enzymes within Various Types of Inflammatory Joint Diseases. Mediators Inflamm 2020; 2020:4301072. [PMID: 33273889 PMCID: PMC7676943 DOI: 10.1155/2020/4301072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
A complex inflammatory process mediated by proinflammatory cytokines and prostaglandins commonly occurs in the synovial tissue of patients with joint trauma (JT), osteoarthritis (OA), and rheumatoid arthritis (RA). This study systematically investigated the distinct expression profile of prostaglandin E2 (PGE2), its processing enzymes (COX-2), and microsomal PGES-1 (mPGES-1) as well as the corresponding prostanoid receptor subtypes (EP1-4) in representative samples of synovial tissue from these patients (JT, OA, and RA). Quantitative TaqMan®-PCR and double immunofluorescence confocal microscopy of synovial tissue determined the abundance and exact immune cell types expressing these target molecules. Our results demonstrated that PGE2 and its processing enzymes COX-2 and mPGES-1 were highest in the synovial tissue of RA, followed by the synovial tissue of OA and JT patients. Corresponding prostanoid receptor, subtypes EP3 were highly expressed in the synovium of RA, followed by the synovial tissue of OA and JT patients. These proinflammatory target molecules were distinctly identified in JT patients mostly in synovial granulocytes, in OA patients predominantly in synovial macrophages and fibroblasts, whereas in RA patients mainly in synovial fibroblasts and plasma cells. Our findings show a distinct expression profile of EP receptor subtypes and PGE2 as well as the corresponding processing enzymes in human synovium that modulate the inflammatory process in JT, OA, and RA patients.
Collapse
|
3
|
Oral administration of EP4-selective agonist KAG-308 suppresses mouse knee osteoarthritis development through reduction of chondrocyte hypertrophy and TNF secretion. Sci Rep 2019; 9:20329. [PMID: 31889132 PMCID: PMC6937271 DOI: 10.1038/s41598-019-56861-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is one of the world’s most common degenerative diseases, but there is no disease-modifying treatment available. Previous studies have shown that prostaglandin E2 (PGE2) and PGE2 receptor 4 (EP4) are involved in OA pathogenesis; however, their roles are not fully understood. Here, we examined the efficacy of oral administration of KAG-308, an EP4-selective agonist, in surgically induced mouse knee OA. Cartilage degeneration and synovitis were significantly inhibited by the KAG-308 treatment. Chondrocyte hypertrophy and expression of tumor necrosis factor alpha (TNF) and matrix metalloproteinase 13 (Mmp13) in the synovium were suppressed in the KAG-308-treated mice. In cultured chondrocytes, hypertrophic differentiation was inhibited by KAG-308 and intranuclear translocation of histone deacetylase 4 (Hdac4) was enhanced. In cultured synoviocytes, lipopolysaccharide (LPS)-induced expression of TNF and Mmp13 was also suppressed by KAG-308. KAG-308 was detected in the synovium and cartilage of orally treated mice. TNF secretion from the synovia of KAG-308-treated mice was significantly lower than control mice. Thus, we conclude that oral administration of KAG-308 suppresses OA development through suppression of chondrocyte hypertrophy and synovitis. KAG-308 may be a potent candidate for OA drug development.
Collapse
|
4
|
Roul D, Rozec B, Ferron M, Erfanian M, Persello A, Audigane L, Grabherr A, Erraud A, Merlet N, Guijarro D, Muramatsu I, Lauzier B, Gauthier C. β 1-Adrenergic cardiac contractility is increased during early endotoxemic shock: Involvement of cyclooxygenases. Life Sci 2019; 236:116865. [PMID: 31525428 DOI: 10.1016/j.lfs.2019.116865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
AIMS Endothelial dysfunction is one of the earliest symptoms in septic patients and plays an important role in the cardiovascular alterations. However, the endothelial mechanisms involved in the impaired sympathetic regulation of the cardiovascular system are not clear. This study aimed to determine the role of the endocardial endothelium (EE) in the cardiac β-adrenergic (β-AR) remodeling at the early phase of endotoxemic shock. MAIN METHODS Rats received either lipopolysaccharide (LPS) or saline (control) intravenously. Three hours later, β-AR cardiac contractility was evaluated on papillary muscles with or without a functional EE. KEY FINDINGS Isoproterenol-induced contractility was strongly increased in papillary muscles from LPS rats. A similar increase was observed with a β1-AR stimulation, whereas β2-AR and β3-AR produced similar contractility in control and LPS treatments. The removal of the EE did not modify β1-AR-induced contractility in controls, whereas it abolished the increased β1-AR response in LPS-treated muscles. In LPS-treated papillary muscle, the increased β1-AR-induced contractility was not modified by pretreatment with a NOS inhibitor or an endothelin receptor antagonist. Conversely, the increased β1-AR-induced contractility was abolished by indomethacin, a non-selective cyclooxygenase (COX) inhibitor, as well as by selective inhibitors of COX1 and COX2. An early treatment with indomethacin improved the survival of LPS rat. SIGNIFICANCE Our results suggest that the EE is involved in the increased cardiac β1-AR contractility in the early phase of endotoxemic shock. This effect is mediated through the activation of COX1 and COX2 and suggests these may be novel putative therapeutic targets during endotoxemic shock.
Collapse
Affiliation(s)
- David Roul
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Bertrand Rozec
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France.
| | - Marine Ferron
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | - Leslie Audigane
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | - Nolwenn Merlet
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Damien Guijarro
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | | | | | | |
Collapse
|
5
|
Zhang L, Yu J, Wang C, Wei W. The effects of total glucosides of paeony (TGP) and paeoniflorin (Pae) on inflammatory-immune responses in rheumatoid arthritis (RA). FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:107-117. [PMID: 32172753 DOI: 10.1071/fp18080] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/02/2018] [Indexed: 06/10/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and systemic autoimmune disease with an unknown aetiology. Accumulative studies suggest that the pathogenesis of RA involves the excessive activation of synoviocytes and immune cells, increasing the secretion of inflammatory mediators and cytokines in synoviocytes, causing dysfunctional E-prostanoid (EP)-G-protein-cyclic adenosine monophosphate (cAMP) and mitogen-associated-protein kinase (MAPK) signalling in synoviocytes. Total glucosides of paeony (TGP) extracted from the roots of Paeonia lactiflora Pall, was approved by the China Food and Drug Administration as an anti-inflammatory and immuno-modulator drug in 1998. Paeoniflorin (Pae), a water-soluble monoterpene glucoside,is the main effective component of TGP. TGP and Pae produce anti-inflammatory and immuno-regulatory effects by suppressing immune cells and synoviocytes activation, decreasing inflammatory substance production and restoring abnormal signalling in synoviocytes. In this review, the regulation of the inflammatory-immune responses and the therapeutic mechanism between RA and TGP and Pae are discussed in detail. The aim of this review was to provide novel insights into the treatment of RA.
Collapse
Affiliation(s)
- Lei Zhang
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| | - Jun Yu
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
6
|
Kleine SA, Budsberg SC. Synovial membrane receptors as therapeutic targets: A review of receptor localization, structure, and function. J Orthop Res 2017; 35:1589-1605. [PMID: 28374922 DOI: 10.1002/jor.23568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023]
Abstract
Joint pathology and degeneration is a significant cause of pain. The synovial membrane plays an important role in maintenance of the joint, contributes to the pathology of many arthropathies and may be adversely affected in joint disease. Improving knowledge of the receptors present within the synovium will aid in a better understanding of joint pathology and the development of new treatments for diseases such as osteoarthritis and rheumatoid arthritis. Knowledge of the location and function of synovial membrane receptors (both in healthy and diseased synovium) may provide important targets in the treatment of various arthropathies. Classic pain receptors such as opioid receptors in the synovium are a mainstay in local and systemic management of chronic pain in many species. In addition to these, many other receptors such as bradykinin, neurokinin, transient receptor potential vanilloid, and inflammatory receptors, such as prostanoid and interleukin receptors have been discovered within the synovial membrane. These receptors are important in pain, inflammation, and in maintenance of normal joint function and may serve as targets for pharmacologic intervention in pathologic states. The goal of this review is to outline synovial membrane receptor localization and local therapeutic modulation of these receptors, in order to stimulate further research into pharmacological management of arthropathies at the local level. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1589-1605, 2017.
Collapse
Affiliation(s)
- Stephanie A Kleine
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| | - Steven C Budsberg
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| |
Collapse
|
7
|
Shu J, Zhang F, Zhang L, Wei W. G protein coupled receptors signaling pathways implicate in inflammatory and immune response of rheumatoid arthritis. Inflamm Res 2016; 66:379-387. [DOI: 10.1007/s00011-016-1011-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023] Open
|
8
|
Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells. PLoS One 2016; 11:e0147721. [PMID: 26824354 PMCID: PMC4732694 DOI: 10.1371/journal.pone.0147721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/07/2016] [Indexed: 01/18/2023] Open
Abstract
Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases.
Collapse
|
9
|
Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev 2013; 65:1010-52. [PMID: 23776144 DOI: 10.1124/pr.112.007195] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The EP4 prostanoid receptor is one of four receptor subtypes for prostaglandin E2. It belongs to the family of G protein-coupled receptors. It was originally identified, similar to the EP2 receptor as a G(s)α-coupled, adenylyl cyclase-stimulating receptor. EP4 signaling plays a variety of roles through cAMP effectors, i.e., protein kinase A and exchange protein activated by cAMP. However, emerging evidence from studies using pharmacological approaches and genetically modified mice suggests that EP4, unlike EP2, can also be coupled to G(i)α, phosphatidylinositol 3-kinase, β-arrestin, or β-catenin. These signaling pathways constitute unique roles for the EP4 receptor. EP4 is widely distributed in the body and thus plays various physiologic and pathophysiologic roles. In particular, EP4 signaling is closely related to carcinogenesis, cardiac hypertrophy, vasodilation, vascular remodeling, bone remodeling, gastrointestinal homeostasis, renal function, and female reproductive function. In addition to the classic anti-inflammatory action of EP4 on mononuclear cells and T cells, recent evidence has shown that EP4 signaling contributes to proinflammatory action as well. The aim of this review is to present current findings on the biologic functions of the EP4 receptor. In particular, we will discuss its diversity from the standpoint of EP4-mediated signaling.
Collapse
Affiliation(s)
- Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
10
|
Evidence for a pro-proliferative feedback loop in prostate cancer: the role of Epac1 and COX-2-dependent pathways. PLoS One 2013; 8:e63150. [PMID: 23646189 PMCID: PMC3640024 DOI: 10.1371/journal.pone.0063150] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/29/2013] [Indexed: 12/15/2022] Open
Abstract
Objective In human prostate cancer cells, a selective Epac agonist, 8-CPT-2Me-cAMP, upregulates cell proliferation and survival via activation of Ras-MAPK and PI- 3-kinase-Akt-mTOR signaling cascades. Here we examine the role of inflammatory mediators in Epac1-induced cellular proliferation by determining the expression of the pro-inflammatory markers p-cPLA2, COX-2, and PGE2 in prostate cancer cells treated with 8-CPT-2Me-cAMP. Methods We employed inhibitors of COX-2, mTORC1, and mTORC2 to probe cyclic AMP-dependent pathways in human prostate cancer cells. RNAi targeting Epac1, Raptor, and Rictor was also employed in these studies. Results 8-CPT-2Me-cAMP treatment caused a 2–2.5-fold increase of p-cPLA2S505, COX-2, and PGE2 levels in human prostate cancer cell lines. Pretreatment of cells with the COX-2 inhibitor SC-58125 or the EP4 antagonist AH-23848, or with an inhibitor of mTORC1 and mTORC2, Torin1, significantly reduced the Epac1-dependent increase of p-cPLA2 and COX-2, p-S6-kinaseT389, and p-AKTS473. In addition, Epac1-induced protein and DNA synthesis were greatly reduced upon pretreatment of cells with either COX-2, EP4, or mTOR inhibitors. Transfection of prostate cancer cells with Epac1 dsRNA, Raptor dsRNA, or Rictor dsRNA profoundly reduced Epac1-dependent increases in p-cPLA2 and COX-2. Conclusion We show that Epac1, a downstream effector of cAMP, functions as a pro-inflammatory modulator in prostate cancer cells and promotes cell proliferation and survival by upregulating Ras-MAPK, and PI 3-kinase-Akt-mTOR signaling.
Collapse
|
11
|
Reedquist KA, Tak PP. Signal transduction pathways in chronic inflammatory autoimmune disease: small GTPases. Open Rheumatol J 2012; 6:259-72. [PMID: 23028410 PMCID: PMC3460313 DOI: 10.2174/1874312901206010259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 01/28/2023] Open
Abstract
Ras superfamily small GTPases represent a wide and diverse class of intracellular signaling proteins that are highly conserved during evolution. These enzymes serve as key checkpoints in coupling antigen receptor, growth factor, cytokine and chemokine stimulation to cellular responses. Once activated, via their ability to regulate multiple downstream signaling pathways, small GTPases amplify and diversify signaling cascades which regulate cellular proliferation, survival, cytokine expression, trafficking and retention. Small GTPases, particularly members of the Ras, Rap, and Rho family, critically coordinate the function and interplay of immune and stromal cells during inflammatory respones, and increasing evidence indicates that alterations in small GTPase signaling contribute to the pathological behavior of these cell populations in human chronic inflammatory diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Here, we review how Ras, Rap, and Rho family GTPases contribute to the biology of cell populations relevant to human chronic inflammatory disease, highlight recent advances in understanding how alterations in these pathways contribute to pathology in RA and SLE, and discuss new therapeutic strategies that may allow specific targeting of small GTPases in the clinic.
Collapse
Affiliation(s)
- Kris A Reedquist
- Division of Clinical Immunology and Rheumatology, Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
12
|
Abstract
Prostaglandin E(2) (PGE(2)), a cyclooxygenase (COX) product, is the best known lipid mediator that contributes to inflammatory pain. Nonsteroidal anti-inflammatory drugs (NSAIDs), inhibitors of COX-1 and/or COX-2, suppress inflammatory pain by reducing generation of prostanoids, mainly PGE(2), while they exhibit gastrointestinal, renal and cardiovascular toxicities. Selective inhibitors of microsomal PGE synthase-1 and subtype-selective antagonists of PGE(2) receptors, particularly EP(1) and EP(4), may be useful as analgesics with minimized side-effects. Protein kinase C (PKC) and PKA downstream of EP(1) and EP(4), respectively, sensitize/activate multiple molecules including transient receptor potential vanilloid-1 (TRPV1) channels, purinergic P2X3 receptors, and voltage-gated calcium or sodium channels in nociceptors, leading to hyperalgesia. PGE(2) is also implicated in neuropathic and visceral pain and in migraine. Thus, PGE(2) has a great impact on pain signals, and pharmacological intervention in upstream and downstream signals of PGE(2) may serve as novel therapeutic strategies for the treatment of intractable pain.
Collapse
Affiliation(s)
- Atsufumi Kawabata
- Division of Pharmacology and Pathophysiology, School of Pharmacy, Kinki University, Higashi-Osaka 577–8502, Japan.
| |
Collapse
|
13
|
Abstract
Hypertonic stress in the kidney inner medulla is common, yet inner medullary cells adapt to limit cell death. Küper et al. have identified a cell-survival response by which increased cyclooxygenase-2 (COX-2) stimulates a prostaglandin E(2) (PGE(2))/protein kinase A (PKA)-mediated inactivation of the pro-apoptotic protein BAD. However, the PGE(2)/PKA pathway is not the only means to inactivate BAD and limit cell death. This Commentary shows a broader picture of this pathway to examine the kidney's BAD options.
Collapse
Affiliation(s)
- S Russ Price
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
14
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
15
|
Liu Y, Zhang L, Wu Y, Tong T, Zhao W, Li P, Huang M, Wang W, Fang J, Wei W. Therapeutic effects of TACI-Ig on collagen-induced arthritis by regulating T and B lymphocytes function in DBA/1 mice. Eur J Pharmacol 2011; 654:304-14. [PMID: 21244850 DOI: 10.1016/j.ejphar.2011.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 11/13/2010] [Accepted: 01/04/2011] [Indexed: 11/17/2022]
Abstract
To investigate the abnormal function of T and B lymphocytes involved in collagen-induced arthritis in DBA/1 mice and the regulation role of TACI-Ig on T and B lymphocytes, collagen-induced arthritis models were established in DBA/1 mice. Mice were divided randomly into eight groups, including normal, collagen-induced arthritis model, TACI-Ig (0.350, 1.105, 3.333, 10, and 30 mg/kg) and IgG-Fc (10mg/kg) treated groups. The effect of TACI-Ig on collagen-induced arthritis was evaluated by arthritis scores, joints and spleens histopathology, paws radiology, and indices of thymus and spleen. T and B lymphocyte proliferations were assayed by [(3)H]-TdR method. B lymphocyte stimulator and prostaglandin E(2) in serum were assayed by enzyme linked immunosorbent assay. The subsets of T and B lymphocytes were assayed by flow cytometry. Results showed that the onset of paw-swelling was on day 31 after immunization. The peak of inflammation appeared on day 42 and then declined after day 63. Compared with normal mice, collagen-induced arthritis mice have increased arthritis scores, spleen and thymus indices, radiograph scores of joints, and pathology scores of joints and spleens. TACI-Ig could ameliorate these changes and reduce the increased serum level of B lymphocyte stimulator and prostaglandin E(2). Further studies showed that TACI-Ig inhibited T and B lymphocyte proliferation response, and inhibited differentiation and activity of T and B lymphocytes in collagen-induced arthritis mice. In conclusion, TACI-Ig has a good therapeutic action on collagen-induced arthritis mice, which might be related to the regulation of TACI-Ig on inflammation mediators and abnormal function of T and B lymphocytes.
Collapse
Affiliation(s)
- Yunjie Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education Ministry of China, 230032 Hefei, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yun SP, Ryu JM, Jang MW, Han HJ. Interaction of profilin-1 and F-actin via a β-arrestin-1/JNK signaling pathway involved in prostaglandin E(2)-induced human mesenchymal stem cells migration and proliferation. J Cell Physiol 2011; 226:559-71. [PMID: 20717968 DOI: 10.1002/jcp.22366] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although many previous reports have examined the function of prostaglandin E(2) (PGE(2)) in the migration and proliferation of various cell types, the role of the actin cytoskeleton in human mesenchymal stem cells (hMSCs) migration and proliferation has not been reported. The present study examined the involvement of profilin-1 (Pfn-1) and filamentous-actin (F-actin) in PGE(2)-induced hMSC migration and proliferation and its related signal pathways. PGE(2) (10(-6) M) increased both cell migration and proliferation, and also increased E-type prostaglandin receptor 2 (EP2) mRNA expression, β-arrestin-1 phosphorylation, and c-Jun N-terminal kinase (JNK) phosphorylation. Small interfering RNA (siRNA)-mediated knockdown of β-arrestin-1 and JNK (-1, -2, -3) inhibited PGE(2)-induced growth of hMSCs. PGE(2) also activated Pfn-1, which was blocked by JNK siRNA, and induced F-actin level and organization. Downregulation of Pfn-1 by siRNA decreased the level and organization of F-actin. In addition, specific siRNA for TRIO and F-actin-binding protein (TRIOBP) reduced the PGE(2)-induced increase in hMSC migration and proliferation. Together, these experimental data demonstrate that PGE(2) partially stimulates hMSCs migration and proliferation by interaction of Pfn-1 and F-actin via EP2 receptor-dependent β-arrestin-1/JNK signaling pathways.
Collapse
Affiliation(s)
- Seung Pil Yun
- Department of Veterinary Physiology, College of Veterinary Medicine, Biotherapy Human Resources Center (BK21), Chonnam National University, Gwangju, Korea
| | | | | | | |
Collapse
|