1
|
Chu YJ, Wang ML, Wang XB, Zhang XY, Liu LW, Shi YY, Zuo LH, Du SZ, Kang J, Li B, Cheng WB, Sun Z, Zhang XJ. Identifying quality markers of Mailuoshutong pill against thromboangiitis obliterans based on chinmedomics strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154313. [PMID: 35810519 DOI: 10.1016/j.phymed.2022.154313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Mailuoshutong pill (MLSTP) is a traditional Chinese medicine (TCM) for the treatment of Thromboangiitis obliterans (TAO, Buerger's disease) which is a segmental non-atherosclerotic inflammatory occlusive disorder. However, the mechanism and quality standards of MLSTP have not been sufficiently studied. PURPOSE This work aims to investigate the potential mechanisms and quality markers (Q-markers) of MLSTP treating TAO based on the chinmedomics strategy. METHODS The therapeutical effect of MLSTP on TAO rats was evaluated by changes in body weight and clinical score, regional blood flow velocity and perfused blood vessel distribution, hematoxylin-eosin (H&E) staining, serum metabolic profile. Moreover, both endogenous metabolites and exogenous components were simultaneously detected in serum based on ultra-high performance liquid chromatography coupled with a Q Exactive hybrid quadrupole-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS), and multivariate analysis was applied to identify the biomarkers, as well as the dynamic changes of metabolites were observed to explore the mechanism of action of MLSTP. In addition, the pharmacodynamic material basis were identified by correlation analysis between biomarkers and absorbed constituents. Finally, the Q-markers of MLSTP were determined according to the screening principles of Q-marker and validated the measurability. RESULTS MLSTP treatment alleviated disease severity of TAO, reduced inflammatory infiltration, and ameliorated vascular function. 26 potential biomarkers associated with glutamate metabolism, linoleic acid metabolism, arachidonic acid metabolism and so on were identified. Besides, 27 prototypical components were identified in serum, 16 of which were highly correlated with efficacy and could serve as the pharmacodynamic material basis of MLSTP against TAO. In addition, 7 compounds, namely, sweroside, chlorogenic acid, calycosin-7-glucoside, formononetin, paeoniflorin, liquiritigenin and 3-butylidenephthalide, were considered as potential Q-markers of MLSTP. Ultimately, the measurability of the seven Q-markers was validated by rapid identifcation and quantifcation. CONCLUSION This study successfully clarified the therapeutic effect and Q-markers of MLSTP by chinmedomics strategy, which is of great significance for the establishment of quality standards. Furthermore, it provides a certain reference for the screening of Q-markers in TCM prescriptions.
Collapse
Affiliation(s)
- Yao-Juan Chu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Meng-Li Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Xiao-Bao Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Xiang-Yu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Li-Wei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Ying-Ying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Li-Hua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Shu-Zhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China
| | - Bing Li
- State Key Laboratory of Common Technology of Traditional Chinese Medicine and Pharmaceuticals, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Wen-Bo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China.
| | - Xiao-Jian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road 1, Zhengzhou 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Jianshe East Road 1, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Zhang L, Dai Z, Guo R, Wang X, Gong W, Duan J, He Z, Ding R, Zhang X, Nie S, Liang C. Metabolomics reveal dynamic changes in eicosanoid profile in patients with ST-elevation myocardial infarction after percutaneous coronary intervention. Clin Exp Pharmacol Physiol 2021; 48:463-470. [PMID: 33141433 DOI: 10.1111/1440-1681.13435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Eicosanoids play important roles in the cardiovascular system. The metabolic disorders involving some eicosanoids in the pathophysiologic process include myocardial infarction and myocardial ischaemia-reperfusion injury. Percutaneous coronary intervention (PCI) is often the first-choice strategy for acute ST-segment elevation myocardial infarction (STEMI) according to current guidelines. This study aimed to investigate the dynamic eicosanoid metabolic profile in STEMI patients after PCI. The eicosanoid profiles in plasma of 20 patients at seven times (30 minutes before surgery; 6, 12, 24, and 72 hours after surgery; 1 day before discharge; and 28 days after surgery) were studied by using metabolomics. Levels of PGE2, PGD2, and TXA2 were decreased significantly and EETs contents were increased significantly at 6 hours after PCI. EETs were hydrolysed to DHETs within a short time after surgery (12-72 hours). 20-HETE content was significantly increased. In samples taken at the time of discharge and at follow-up after discharge, LTB4 level continued to increase. This work suggests that change in content of some functional eicosanoids may be involved in cardiac injury and repair after PCI in a synergistic manner.
Collapse
Affiliation(s)
- Liuyang Zhang
- Department of Cardiology, Changzheng Hospital, Navy Military Medical University, Shanghai, China
| | - Zhi Dai
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd.2., Beijing, China
| | - Ruifeng Guo
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiao Wang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Gong
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Juanhui Duan
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd.2., Beijing, China
| | - Zhiqing He
- Department of Cardiology, Changzheng Hospital, Navy Military Medical University, Shanghai, China
| | - Ru Ding
- Department of Cardiology, Changzheng Hospital, Navy Military Medical University, Shanghai, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, China
| | - Shaoping Nie
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Navy Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Hua T, Bao Q, He X, Cai W, He J. Lipidomics Revealed Alteration of Sphingolipid Metabolism During the Reparative Phase After Myocardial Infarction Injury. Front Physiol 2021; 12:663480. [PMID: 33776806 PMCID: PMC7994894 DOI: 10.3389/fphys.2021.663480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023] Open
Abstract
Aberrant sphingolipid metabolism contributes to cardiac pathophysiology. Emerging evidence found that an increased level of ceramide during the inflammatory phase of post-myocardial infarction (MI) served as a biomarker and was associated with cardiac dysfunction. However, the alternation of the sphingolipid profile during the reparative phase after MI is still not fully understood. Using a mouse model of the left anterior descending ligation that leads to MI, we performed metabolomics studies to assess the alternations of both plasma and myocardial sphingolipid profiles during the reparative phase post-MI. A total number of 193 sphingolipid metabolites were detected. Myocardial sphingolipids but not plasma sphingolipids showed marked change after MI injury. Ceramide-1-phosphates, which were accumulated after MI, contributed highly to the difference in sphingolipid profiles between groups. Consistently, the expression of ceramide kinase, which phosphorylates ceramides to generate ceramide-1-phosphates, was upregulated in heart tissue after MI injury. Our findings revealed the altering sphingolipid metabolism during the reparative phase post-MI and highlighted the potential role of ceramide kinase/ceramide-1-phosphate in ischemic heart disease.
Collapse
Affiliation(s)
- Tong Hua
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue He
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Wenbin Cai
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Darwesh AM, Bassiouni W, Sosnowski DK, Seubert JM. Can N-3 polyunsaturated fatty acids be considered a potential adjuvant therapy for COVID-19-associated cardiovascular complications? Pharmacol Ther 2021; 219:107703. [PMID: 33031856 PMCID: PMC7534795 DOI: 10.1016/j.pharmthera.2020.107703] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has currently led to a global pandemic with millions of confirmed and increasing cases around the world. The novel SARS-CoV-2 not only affects the lungs causing severe acute respiratory dysfunction but also leads to significant dysfunction in multiple organs and physiological systems including the cardiovascular system. A plethora of studies have shown the viral infection triggers an exaggerated immune response, hypercoagulation and oxidative stress, which contribute significantly to poor cardiovascular outcomes observed in COVID-19 patients. To date, there are no approved vaccines or therapies for COVID-19. Accordingly, cardiovascular protective and supportive therapies are urgent and necessary to the overall prognosis of COVID-19 patients. Accumulating literature has demonstrated the beneficial effects of n-3 polyunsaturated fatty acids (n-3 PUFA) toward the cardiovascular system, which include ameliorating uncontrolled inflammatory reactions, reduced oxidative stress and mitigating coagulopathy. Moreover, it has been demonstrated the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are precursors to a group of potent bioactive lipid mediators, generated endogenously, which mediate many of the beneficial effects attributed to their parent compounds. Considering the favorable safety profile for n-3 PUFAs and their metabolites, it is reasonable to consider n-3 PUFAs as potential adjuvant therapies for the clinical management of COVID-19 patients. In this article, we provide an overview of the pathogenesis of cardiovascular complications secondary to COVID-19 and focus on the mechanisms that may contribute to the likely benefits of n-3 PUFAs and their metabolites.
Collapse
Affiliation(s)
- Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Deanna K Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Yuan M, Zhang Y, Hua T, Liu XL, Liu T, Yuan RY, Li GP, Zhu Y, Zhang X. Omega-3 polyunsaturated fatty acid supplementation improves lipid metabolism and endothelial function by providing a beneficial eicosanoid-pattern in patients with acute myocardial infarction: A randomized, controlled trial. Clin Nutr 2021; 40:445-459. [PMID: 33041091 DOI: 10.1016/j.clnu.2020.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/27/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND & AIMS Omega-3 polyunsaturated fatty acid (ω-3 PUFA) have been reported to have beneficial cardiovascular effects, but its mechanism of protection against acute myocardial infarction (AMI) who are under guideline-based therapy is not fully understood. Here, we used a metabolomic approach to systematically analyze the eicosanoid metabolites induced by ω-3 PUFA supplementation and investigated the underlying mechanisms. METHODS Participants with AMI after successful percutaneous coronary intervention were randomized to 3 months of 2 g daily ω-3 PUFA and guideline-adjusted therapy (n = 30, ω-3 therapy) or guideline-adjusted therapy alone (n = 30, Usual therapy). Functional PUFA-derived eicosanoids in plasma were profiled by metabolomics. Clinical and laboratory tests were obtained before and 3 months after baseline and after the study therapy. RESULTS By intent-to-treat analysis, the content of 11-HDoHE, 20-HDoHE and 16,17-EDP and that of epoxyeicosatetraenoic acids (EEQs), derived from docosahexaenoic acid and eicosapentaenoic acid, respectively, were significantly higher with ω-3 group than Usual therapy, whereas that of prostaglandin J2 (PGJ2) and leukotriene B4, derived from arachidonic acid, was significantly decreased. As compared with Usual therapy, ω-3 PUFA therapy significantly reduced levels of triglycerides (-6.3%, P < 0.05), apolipoprotein B (-4.9%, P < 0.05) and lipoprotein(a) (-37.0%, P < 0.05) and increased nitric oxide level (62.2%, P < 0.05). In addition, the levels of these variables were positively correlated with change in 16,17-EDP and EEQs content but negatively with change in PGJ2 content. CONCLUSIONS ω-3 PUFA supplementation may improve lipid metabolism and endothelial function possibly by affecting eicosanoid metabolic status at a systemic level during convalescent healing after AMI. CLINICAL TRIAL REGISTRATION URL: http://www.chictr.org.cn. Unique identifier: ChiCTR1900025859.
Collapse
Affiliation(s)
- Meng Yuan
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, QiXiangTai Road 23, Tianjin 300070, China; Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, PingJiang Road 22, Tianjin, 300211, China
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, PingJiang Road 22, Tianjin, 300211, China
| | - Tong Hua
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, QiXiangTai Road 23, Tianjin 300070, China
| | - Xiang-Li Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, PingJiang Road 22, Tianjin, 300211, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, PingJiang Road 22, Tianjin, 300211, China
| | - Ru-Yu Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, PingJiang Road 22, Tianjin, 300211, China
| | - Guang-Ping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, PingJiang Road 22, Tianjin, 300211, China.
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, QiXiangTai Road 23, Tianjin 300070, China.
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, QiXiangTai Road 23, Tianjin 300070, China.
| |
Collapse
|
6
|
DHA Supplementation Attenuates MI-Induced LV Matrix Remodeling and Dysfunction in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7606938. [PMID: 32832005 PMCID: PMC7424392 DOI: 10.1155/2020/7606938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 01/12/2023]
Abstract
Objective Myocardial ischemia and reperfusion (I/R) injury is associated with oxidative stress and inflammation, leading to scar development and malfunction. The marine omega-3 fatty acids (ω-3 FA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are mediating cardioprotection and improving clinical outcomes in patients with heart disease. Therefore, we tested the hypothesis that docosahexaenoic acid (DHA) supplementation prior to LAD occlusion-induced myocardial injury (MI) confers cardioprotection in mice. Methods C57BL/6N mice were placed on DHA or control diets (CD) beginning 7 d prior to 60 min LAD occlusion-induced MI or sham surgery. The expression of inflammatory mediators was measured via RT-qPCR. Besides FACS analysis for macrophage quantification and subtype evaluation, macrophage accumulation as well as collagen deposition was quantified in histological sections. Cardiac function was assessed using a pressure-volume catheter for up to 14 d. Results DHA supplementation significantly attenuated the induction of peroxisome proliferator-activated receptor-α (PPAR-α) (2.3 ± 0.4 CD vs. 1.4 ± 0.3 DHA) after LAD occlusion. Furthermore, TNF-α (4.0 ± 0.6 CD vs. 1.5 ± 0.2 DHA), IL-1β (60.7 ± 7.0 CD vs. 11.6 ± 1.9 DHA), and IL-10 (223.8 ± 62.1 CD vs. 135.5 ± 38.5 DHA) mRNA expression increase was diminished in DHA-supplemented mice after 72 h reperfusion. These changes were accompanied by a less prominent switch in α/β myosin heavy chain isoforms. Chemokine mRNA expression was stronger initiated (CCL2 6 h: 32.8 ± 11.5 CD vs. 78.8 ± 13.6 DHA) but terminated earlier (CCL2 72 h: 39.5 ± 7.8 CD vs. 8.2 ± 1.9 DHA; CCL3 72 h: 794.3 ± 270.9 CD vs. 258.2 ± 57.8 DHA) in DHA supplementation compared to CD mice after LAD occlusion. Correspondingly, DHA supplementation was associated with a stronger increase of predominantly alternatively activated Ly6C-positive macrophage phenotype, being associated with less collagen deposition and better LV function (EF 14 d: 17.6 ± 2.6 CD vs. 31.4 ± 1.5 DHA). Conclusion Our data indicate that DHA supplementation mediates cardioprotection from MI via modulation of the inflammatory response with timely and attenuated remodeling. DHA seems to attenuate MI-induced cardiomyocyte injury partly by transient PPAR-α downregulation, diminishing the need for antioxidant mechanisms including mitochondrial function, or α- to β-MHC isoform switch.
Collapse
|
7
|
Darwesh AM, Sosnowski DK, Lee TYT, Keshavarz-Bahaghighat H, Seubert JM. Insights into the cardioprotective properties of n-3 PUFAs against ischemic heart disease via modulation of the innate immune system. Chem Biol Interact 2019; 308:20-44. [DOI: 10.1016/j.cbi.2019.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
|