1
|
González-Miguéns R, Soler-Zamora C, Useros F, Nogal-Prata S, Berney C, Blanco-Rotea A, Carrasco-Braganza MI, de Salvador-Velasco D, Guillén-Oterino A, Tenorio-Rodríguez D, Velázquez D, Heger TJ, Sanmartín I, Lara E. Cyphoderia ampulla (Cyphoderiidae: Rhizaria), a tale of freshwater sailors. The causes and consequences of ecological transitions through the salinity barrier in a family of benthic protists. Mol Ecol 2022; 31:2644-2663. [PMID: 35262986 PMCID: PMC9311665 DOI: 10.1111/mec.16424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
The salinity barrier that separates marine and freshwater biomes is probably the most important division in biodiversity on Earth. Those organisms that successfully performed this transition had access to new ecosystems while undergoing changes in selective pressure, which often led to major shifts in diversification rates. While these transitions have been extensively investigated in animals, the tempo, mode, and outcome of crossing the salinity barrier have been scarcely studied in other eukaryotes. Here, we reconstructed the evolutionary history of the species complex Cyphoderia ampulla (Euglyphida: Cercozoa: Rhizaria) based on DNA sequences from the nuclear SSU rRNA gene and the mitochondrial cytochrome oxidase subunit I gene, obtained from publicly available environmental DNA data (GeneBank, EukBank) and isolated organisms. A tree calibrated with euglyphid fossils showed that four independent transitions towards freshwater systems occurred from the Mid Miocene onwards, coincident with important fluctuations in sea level. Ancestral trait reconstructions indicated that the whole family Cyphoderiidae had a marine origin and suggest that ancestors of the freshwater forms were euryhaline and lived in environments with fluctuating salinity. Diversification rates did not show any obvious increase concomitant with ecological transitions, but morphometric analyses indicated that species increased in size and homogenized their morphology after colonizing the new environments. This suggests adaptation to changes in selective pressure exerted by life in freshwater sediments.
Collapse
Affiliation(s)
| | - Carmen Soler-Zamora
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Fernando Useros
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Sandra Nogal-Prata
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Cédric Berney
- Université de la Sorbonne CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, 29680, Roscoff, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 10, Paris, France
| | - Andrés Blanco-Rotea
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - María Isabel Carrasco-Braganza
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - David de Salvador-Velasco
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - Antonio Guillén-Oterino
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - Daniel Tenorio-Rodríguez
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - David Velázquez
- Dpt. of Biology, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Thierry J Heger
- Soil Science and Environment Group, CHANGINS, University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260, Nyon, Switzerland
| | - Isabel Sanmartín
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Enrique Lara
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| |
Collapse
|
2
|
Siver PA, Skogstad A. A first account of the heterotrophic eukaryote Rabdiophrys Rainer from the fossil record and description of a new species from an ancient Eocene Arctic freshwater lake. Eur J Protistol 2021; 82:125857. [PMID: 34952248 DOI: 10.1016/j.ejop.2021.125857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022]
Abstract
Rotosphaerids are unicellular, heterotrophic, eukayotic protists that have filopodia, an exterior covering consisting of highly ornamented siliceous scales, and are classified in the Rotosphaerida within the opistokont lineage. Given their appearance as relatively large spherical cells with protruding filopodia and a silica scale covering, they are often mistaken for centrohelid heliozoans. Even though these organisms are widely distributed in both marine and freshwater environments, many species are rarely reported, and none have been reported from the fossil record. We report extensive remains of a new species of Rabdiophrys, R. giraffensis, from an ancient waterbody that was situated near the Arctic Circle in northern Canada during the Eocene. The new species has both plate and spine scales that are similar in morphology, but significantly larger than its closest modern congeners, R. monopora and R. anulifera. The waterbody in which the new species grew and thrived is inferred to have been a moderately deep, circumneutral pond, with moderate concentrations of nutrients and dissolved humic material.
Collapse
Affiliation(s)
- Peter A Siver
- Department of Botany, Connecticut College, New London, CT 06320, USA.
| | | |
Collapse
|
3
|
Siver PA. Remarkably preserved cysts of the extinct synurophyte, Mallomonas ampla, uncovered from a 48 Ma freshwater Eocene lake. Sci Rep 2020; 10:5204. [PMID: 32251325 PMCID: PMC7090060 DOI: 10.1038/s41598-020-61993-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/05/2020] [Indexed: 11/28/2022] Open
Abstract
Chrysophyte algae produce a siliceous stage in their life cycle, through either asexual or sexual reproduction, known as a cyst. Cysts form in response to shifts in environmental conditions, population density, or predation pressure, and upon germination provide a seed source for future populations. Cysts are morphologically distinct for each species, and since their remains become part of the sediment or fossil record cysts are valuable tools in ecological and paleolimnological investigations. However, their value as biological indicators is limited because the vast majority of cyst morphotypes have not been linked to specific vegetative species. In the current work, an exquisitely preserved and morphologically complex cyst type is described from a 48 million year old early Eocene fossil site. This finding is remarkable since many of the cysts were still associated with components of the living vegetative cells that produced them, enabling the morphotype to be immediately linked to the synurophyte, Mallomonas ampla. Fusion of identifiable components of the living cell post cyst formation is unknown in modern investigations. The identification of the cyst structure for M. ampla could be valuable in determining cyst morphotypes for other species in the lineage.
Collapse
Affiliation(s)
- Peter A Siver
- Department of Botany, Connecticut College, New London, CT, 06320, USA.
| |
Collapse
|
4
|
Lahr DJG, Kosakyan A, Lara E, Mitchell EAD, Morais L, Porfirio-Sousa AL, Ribeiro GM, Tice AK, Pánek T, Kang S, Brown MW. Phylogenomics and Morphological Reconstruction of Arcellinida Testate Amoebae Highlight Diversity of Microbial Eukaryotes in the Neoproterozoic. Curr Biol 2019; 29:991-1001.e3. [PMID: 30827918 DOI: 10.1016/j.cub.2019.01.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 11/26/2022]
Abstract
Life was microbial for the majority of Earth's history, but as very few microbial lineages leave a fossil record, the Precambrian evolution of life remains shrouded in mystery. Shelled (testate) amoebae stand out as an exception with rich documented diversity in the Neoproterozoic as vase-shaped microfossils (VSMs). While there is general consensus that most of these can be attributed to the Arcellinida lineage in Amoebozoa, it is still unclear whether they can be used as key fossils for interpretation of early eukaryotic evolution. Here, we present a well-resolved phylogenomic reconstruction based on 250 genes, obtained using single-cell transcriptomic techniques from a representative selection of 19 Arcellinid testate amoeba taxa. The robust phylogenetic framework enables deeper interpretations of evolution in this lineage and demanded an updated classification of the group. Additionally, we performed reconstruction of ancestral morphologies, yielding hypothetical ancestors remarkably similar to existing Neoproterozoic VSMs. We demonstrate that major lineages of testate amoebae were already diversified before the Sturtian glaciation (720 mya), supporting the hypothesis that massive eukaryotic diversification took place in the early Neoproterozoic and congruent with the interpretation that VSM are arcellinid testate amoebae.
Collapse
Affiliation(s)
- Daniel J G Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil.
| | - Anush Kosakyan
- Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Enrique Lara
- Real Jardín Botánico, CSIC, Plaza Murillo 2, ES 28014 Madrid, Spain; Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland; Botanical Garden of Neuchâtel, Pertuis-du-Sault 58, 2000 Neuchâtel, Switzerland
| | - Luana Morais
- Department of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Brazil
| | | | - Giulia M Ribeiro
- Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, USA
| | - Tomáš Pánek
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA; Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Seungho Kang
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, USA
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, USA.
| |
Collapse
|
5
|
Morphology and phylogeny of the testate amoebae Euglypha bryophila Brown, 1911 and Euglypha cristata Leidy, 1874 (Rhizaria, Euglyphida). Eur J Protistol 2017; 61:76-84. [DOI: 10.1016/j.ejop.2017.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
|
6
|
Pisera A, Manconi R, Siver PA, Wolfe AP. The sponge genus Ephydatia from the high-latitude middle Eocene: environmental and evolutionary significance. PALAONTOLOGISCHE ZEITSCHRIFT 2016; 90:673-680. [PMID: 28615751 PMCID: PMC5445566 DOI: 10.1007/s12542-016-0328-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 09/04/2016] [Indexed: 06/07/2023]
Abstract
The freshwater sponge species Ephydatia cf. facunda Weltner, 1895 (Spongillida, Spongillidae) is reported for the first time as a fossil from middle Eocene lake sediments of the Giraffe kimberlite maar in northern Canada. The sponge is represented by birotule gemmuloscleres as well as oxea megascleres. Today, E. facunda inhabits warm-water bodies, so its presence in the Giraffe locality provides evidence of a warm climate at high latitudes during the middle Eocene. The morphological similarity of the birotules to modern conspecific forms suggests protracted morphological stasis, comparable to that reported for other siliceous microfossils from the same locality.
Collapse
Affiliation(s)
- Andrzej Pisera
- Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland
| | - Renata Manconi
- Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, 07100 Sassari, Italy
| | - Peter A. Siver
- Botany Department, Connecticut College, New London, CT 06320 USA
| | - Alexander P. Wolfe
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 Canada
| |
Collapse
|
7
|
Abstract
The ancestor of Paulinella chromatophora established a symbiotic relationship with cyanobacteria related to the Prochloroccocus/Synechococcus clade. This event has been described as a second primary endosymbiosis leading to a plastid in the making. Based on the rate of pseudogene disintegration in the endosymbiotic bacteria Buchnera aphidicola, it was suggested that the chromatophore in P. chromatophora has a minimum age of ~60 Myr. Here we revisit this estimation by using a lognormal relaxed molecular clock on the 18S rRNA of P. chromatophora. Our time estimates show that depending on the assumptions made to calibrate the molecular clock, P. chromatophora diverged from heterotrophic Paulinella spp. ~ 90 to 140 Myr ago, thus establishing a maximum date for the origin of the chromatophore.
Collapse
|
8
|
Lahr DJG, Bosak T, Lara E, Mitchell EAD. The Phanerozoic diversification of silica-cycling testate amoebae and its possible links to changes in terrestrial ecosystems. PeerJ 2015; 3:e1234. [PMID: 26734499 PMCID: PMC4699787 DOI: 10.7717/peerj.1234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/19/2015] [Indexed: 11/20/2022] Open
Abstract
The terrestrial cycling of Si is thought to have a large influence on the terrestrial and marine primary production, as well as the coupled biogeochemical cycles of Si and C. Biomineralization of silica is widespread among terrestrial eukaryotes such as plants, soil diatoms, freshwater sponges, silicifying flagellates and testate amoebae. Two major groups of testate (shelled) amoebae, arcellinids and euglyphids, produce their own silica particles to construct shells. The two are unrelated phylogenetically and acquired biomineralizing capabilities independently. Hyalosphenids, a group within arcellinids, are predators of euglyphids. We demonstrate that hyalosphenids can construct shells using silica scales mineralized by the euglyphids. Parsimony analyses of the current hyalosphenid phylogeny indicate that the ability to “steal” euglyphid scales is most likely ancestral in hyalosphenids, implying that euglyphids should be older than hyalosphenids. However, exactly when euglyphids arose is uncertain. Current fossil record contains unambiguous euglyphid fossils that are as old as 50 million years, but older fossils are scarce and difficult to interpret. Poor taxon sampling of euglyphids has also prevented the development of molecular clocks. Here, we present a novel molecular clock reconstruction for arcellinids and consider the uncertainties due to various previously used calibration points. The new molecular clock puts the origin of hyalosphenids in the early Carboniferous (∼370 mya). Notably, this estimate coincides with the widespread colonization of land by Si-accumulating plants, suggesting possible links between the evolution of Arcellinid testate amoebae and the expansion of terrestrial habitats rich in organic matter and bioavailable Si.
Collapse
Affiliation(s)
- Daniel J G Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo , Rua do Matão, São Paulo , Brazil
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachussetts Institute of Technology , Cambridge, MA , USA
| | - Enrique Lara
- Laboratory of Soil Biology, University of Neuchatel , Neuchatel , Switzerland
| | - Edward A D Mitchell
- Laboratory of Soil Biology, University of Neuchatel, Neuchatel, Switzerland; Jardin Botanique de Neuchâtel, Neuchatel, Switzerland
| |
Collapse
|