1
|
Eglit Y, Williams SK, Roger AJ, Simpson AGB. Characterization of Skoliomonas gen. nov., a haloalkaliphilic anaerobe related to barthelonids (Metamonada). J Eukaryot Microbiol 2024; 71:e13048. [PMID: 39225178 PMCID: PMC11603281 DOI: 10.1111/jeu.13048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Metamonads are a large and exclusively anaerobic group of protists. Additionally, they are one of the three clades proposed to ancestrally possess an "excavate" cell morphology, with a conspicuous ventral groove accompanied by a posterior flagellum with a vane. Here, we cultivate and characterize four anaerobic bacterivorous flagellates from hypersaline and alkaline soda lake environments, which represent a novel clade. Small subunit ribosomal RNA (SSU rRNA) gene phylogenies support recent phylogenomic analyses in placing them as the sister of barthelonids, a group that is itself sister to or deeply branching within Fornicata (Metamonada). The new isolates have a distinctive morphology: the hunchbacked cell body is traversed by a narrow ventral groove ending in a large opening to a conspicuous recurrent cytopharynx. The right margin of the groove is defined by a thin "lip." The posterior flagellum bears a wide ventral-facing vane. The narrow ventral groove and elongate cytopharynx are shared with barthelonids. We describe one isolate as Skoliomonas litria, gen. et sp. nov. Further investigation of their mitochondrial-related organelles (MROs) and detailed ultrastructural studies would be important to understanding the adaptation to anaerobic conditions in Metamonads-especially fornicates-as well as the evolution of the "excavate" cell architecture.
Collapse
Affiliation(s)
- Yana Eglit
- Department of Biology, and Institute for Comparative GenomicsDalhousie UniversityHalifaxNova ScotiaCanada
- Present address:
Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Shelby K. Williams
- Department of Biochemistry, and Institute for Comparative GenomicsDalhousie UniversityHalifaxNova ScotiaCanada
| | - Andrew J. Roger
- Department of Biochemistry, and Institute for Comparative GenomicsDalhousie UniversityHalifaxNova ScotiaCanada
| | - Alastair G. B. Simpson
- Department of Biology, and Institute for Comparative GenomicsDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
2
|
Gile GH. Protist symbionts of termites: diversity, distribution, and coevolution. Biol Rev Camb Philos Soc 2024; 99:622-652. [PMID: 38105542 DOI: 10.1111/brv.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The symbiosis between termites and their hindgut protists is mutually obligate and vertically inherited. It was established by the late Jurassic in the cockroach ancestors of termites as they transitioned to wood feeding. Since then, protist symbionts have been transmitted from host generation to host generation by proctodeal trophallaxis (anal feeding). The protists belong to multiple lineages within the eukaryotic superphylum Metamonada. Most of these lineages have evolved large cells with complex morphology, unlike the non-termite-associated Metamonada. The species richness and taxonomic composition of symbiotic protist communities varies widely across termite lineages, especially within the deep-branching clade Teletisoptera. In general, closely related termites tend to harbour closely related protists, and deep-branching termites tend to harbour deep-branching protists, reflecting their broad-scale co-diversification. A closer view, however, reveals a complex distribution of protist lineages across hosts. Some protist taxa are common, some are rare, some are widespread, and some are restricted to a single host family or genus. Some protist taxa can be found in only a few, distantly related, host species. Thus, the long history of co-diversification in this symbiosis has been complicated by lineage-specific loss of symbionts, transfer of symbionts from one host lineage to another, and by independent diversification of the symbionts relative to their hosts. This review aims to introduce the biology of this important symbiosis and serve as a gateway to the diversity and systematics literature for both termites and protists. A searchable database with all termite-protist occurrence records and taxonomic references is provided as a supplementary file to encourage and facilitate new research in this field.
Collapse
Affiliation(s)
- Gillian H Gile
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
3
|
Novák LVF, Treitli SC, Pyrih J, Hałakuc P, Pipaliya SV, Vacek V, Brzoň O, Soukal P, Eme L, Dacks JB, Karnkowska A, Eliáš M, Hampl V. Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria. PLoS Genet 2023; 19:e1011050. [PMID: 38060519 PMCID: PMC10703272 DOI: 10.1371/journal.pgen.1011050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.
Collapse
Affiliation(s)
- Lukáš V. F. Novák
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
- Université de Bretagne Occidentale, CNRS, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Plouzané, France
| | - Sebastian C. Treitli
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
- RG Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Pyrih
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Poland
| | - Shweta V. Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vojtěch Vacek
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Ondřej Brzoň
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Petr Soukal
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Laura Eme
- Ecology, Systematics, and Evolution Unit, Université Paris-Saclay, CNRS, Orsay, France
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Poland
| | - Marek Eliáš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Ostrava, Czech Republic
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
4
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
5
|
Treitli SC, Peña-Diaz P, Hałakuc P, Karnkowska A, Hampl V. High quality genome assembly of the amitochondriate eukaryote Monocercomonoides exilis. Microb Genom 2021; 7. [PMID: 34951395 PMCID: PMC8767320 DOI: 10.1099/mgen.0.000745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Monocercomonoides exilis is considered the first known eukaryote to completely lack mitochondria. This conclusion is based primarily on a genomic and transcriptomic study which failed to identify any mitochondrial hallmark proteins. However, the available genome assembly has limited contiguity and around 1.5 % of the genome sequence is represented by unknown bases. To improve the contiguity, we re-sequenced the genome and transcriptome of M. exilis using Oxford Nanopore Technology (ONT). The resulting draft genome is assembled in 101 contigs with an N50 value of 1.38 Mbp, almost 20 times higher than the previously published assembly. Using a newly generated ONT transcriptome, we further improve the gene prediction and add high quality untranslated region (UTR) annotations, in which we identify two putative polyadenylation signals present in the 3′UTR regions and characterise the Kozak sequence in the 5′UTR regions. All these improvements are reflected by higher BUSCO genome completeness values. Regardless of an overall more complete genome assembly without missing bases and a better gene prediction, we still failed to identify any mitochondrial hallmark genes, thus further supporting the hypothesis on the absence of mitochondrion.
Collapse
Affiliation(s)
- Sebastian Cristian Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Priscila Peña-Diaz
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| |
Collapse
|
6
|
Heiss AA, Warring SD, Lukacs K, Favate J, Yang A, Gyaltshen Y, Filardi C, Simpson AGB, Kim E. Description of Imasa heleensis, gen. nov., sp. nov. (Imasidae, fam. nov.), a Deep-Branching Marine Malawimonad and Possible Key Taxon in Understanding Early Eukaryotic Evolution. J Eukaryot Microbiol 2020; 68:e12837. [PMID: 33274482 DOI: 10.1111/jeu.12837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022]
Abstract
Malawimonadida is a deep-level (arguably "kingdom-scale") lineage of eukaryotes whose phylogenetic affinities are uncertain but of great evolutionary interest, as the group is suspected to branch close to the root of the tree of eukaryotes. Part of the difficulty in placing Malawimonadida phylogenetically is its tiny circumscription: at present, it comprises only two described and one cultured but undescribed species, all of them are freshwater suspension-feeding nanoflagellates. In this study, we cultivated and characterised Imasa heleensis gen. nov., sp. nov. (Imasidae fam. nov.), the first marine malawimonad to be described. Light and electron microscopy observations show that Imasa is largely similar to other malawimonads, but more frequently adheres to the substrate, often by means of a pliable posterior extension. Phylogenetic analyses based on two ribosomal RNA genes and four translated protein-coding genes using three different taxon sets place Imasa as sister to the three freshwater malawimonad strains with strong support. Imasa's mitochondrial genome is circular-mapping and shows a similar gene complement to other known malawimonads. We conclude that Imasa represents an important expansion of the range of taxa available for future evolutionary study.
Collapse
Affiliation(s)
- Aaron A Heiss
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | - Sally D Warring
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | - Kaleigh Lukacs
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | - John Favate
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | - Ashley Yang
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | - Yangtsho Gyaltshen
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| | | | - Alastair G B Simpson
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 1355 Oxford St, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Eunsoo Kim
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York City, New York, 10024, USA
| |
Collapse
|
7
|
Kolisko M, Flegontova O, Karnkowska A, Lax G, Maritz JM, Pánek T, Táborský P, Carlton JM, Čepička I, Horák A, Lukeš J, Simpson AGB, Tai V. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5996027. [PMID: 33216898 PMCID: PMC7678783 DOI: 10.1093/database/baaa080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/04/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
The small subunit ribosomal RNA (SSU rRNA) gene is a widely used molecular marker to study the diversity of life. Sequencing of SSU rRNA gene amplicons has become a standard approach for the investigation of the ecology and diversity of microbes. However, a well-curated database is necessary for correct classification of these data. While available for many groups of Bacteria and Archaea, such reference databases are absent for most eukaryotes. The primary goal of the EukRef project (eukref.org) is to close this gap and generate well-curated reference databases for major groups of eukaryotes, especially protists. Here we present a set of EukRef-curated databases for the excavate protists—a large assemblage that includes numerous taxa with divergent SSU rRNA gene sequences, which are prone to misclassification. We identified 6121 sequences, 625 of which were obtained from cultures, 3053 from cell isolations or enrichments and 2419 from environmental samples. We have corrected the classification for the majority of these curated sequences. The resulting publicly available databases will provide phylogenetically based standards for the improved identification of excavates in ecological and microbiome studies, as well as resources to classify new discoveries in excavate diversity.
Collapse
Affiliation(s)
- Martin Kolisko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Olga Flegontova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland.,Department of Parasitology, BIOCEV, Faculty of Science, Charles University, 128 43 Vestec, Czech Republic
| | - Gordon Lax
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Julia M Maritz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Tomáš Pánek
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Petr Táborský
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Ivan Čepička
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Aleš Horák
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Alastair G B Simpson
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Vera Tai
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
8
|
Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, Soukal P, Barlow LD, Herman EK, Pipaliya SV, Pánek T, Žihala D, Petrželková R, Butenko A, Eme L, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Hampl V. The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion. Mol Biol Evol 2019; 36:2292-2312. [PMID: 31387118 PMCID: PMC6759080 DOI: 10.1093/molbev/msz147] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sebastian C Treitli
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Ondřej Brzoň
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Lukáš Novák
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Vojtěch Vacek
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Petr Soukal
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Lael D Barlow
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Emily K Herman
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Shweta V Pipaliya
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anzhelika Butenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Vladimír Hampl
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| |
Collapse
|
9
|
Vacek V, Novák LVF, Treitli SC, Táborský P, Cepicka I, Kolísko M, Keeling PJ, Hampl V. Fe-S Cluster Assembly in Oxymonads and Related Protists. Mol Biol Evol 2019; 35:2712-2718. [PMID: 30184127 PMCID: PMC6231488 DOI: 10.1093/molbev/msy168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the acquisition of the SUF Fe–S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dispensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, composing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe–S cluster biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, composed of SufB, C, D, S, and U proteins, altogether suggesting that the transition from ISC to SUF preceded their last common ancestor. Interestingly, we observed that SufDSU were fused in all three oxymonad genomes, and in the genome of Paratrimastix pyriformis. The donor of the SUF genes is not clear from phylogenetic analyses, but the enzyme composition of the pathway and the presence of SufDSU fusion suggests Firmicutes, Thermotogae, Spirochaetes, Proteobacteria, or Chloroflexi as donors. The inventory of the downstream CIA pathway enzymes is consistent with that of closely related species that retain ISC, indicating that the switch from ISC to SUF did not markedly affect the downstream process of maturation of cytosolic and nuclear Fe–S proteins.
Collapse
Affiliation(s)
- Vojtech Vacek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Lukáš V F Novák
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Cepicka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic.,Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
10
|
Molecular and Morphological Diversity of the Oxymonad Genera Monocercomonoides and Blattamonas gen. nov. Protist 2018; 169:744-783. [DOI: 10.1016/j.protis.2018.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 11/20/2022]
|
11
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
12
|
Heiss AA, Kolisko M, Ekelund F, Brown MW, Roger AJ, Simpson AGB. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171707. [PMID: 29765641 PMCID: PMC5936906 DOI: 10.1098/rsos.171707] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 05/16/2023]
Abstract
Modern syntheses of eukaryote diversity assign almost all taxa to one of three groups: Amorphea, Diaphoretickes and Excavata (comprising Discoba and Metamonada). The most glaring exception is Malawimonadidae, a group of small heterotrophic flagellates that resemble Excavata by morphology, but branch with Amorphea in most phylogenomic analyses. However, just one malawimonad, Malawimonas jakobiformis, has been studied with both morphological and molecular-phylogenetic approaches, raising the spectre of interpretation errors and phylogenetic artefacts from low taxon sampling. We report a morphological and phylogenomic study of a new deep-branching malawimonad, Gefionella okellyi n. gen. n. sp. Electron microscopy revealed all canonical features of 'typical excavates', including flagellar vanes (as an opposed pair, unlike M. jakobiformis but like many metamonads) and a composite fibre. Initial phylogenomic analyses grouped malawimonads with the Amorphea-related orphan lineage Collodictyon, separate from a Metamonada+Discoba clade. However, support for this topology weakened when more sophisticated evolutionary models were used, and/or fast-evolving sites and long-branching taxa (FS/LB) were excluded. Analyses of '-FS/LB' datasets instead suggested a relationship between malawimonads and metamonads. The 'malawimonad+metamonad signal' in morphological and molecular data argues against a strict Metamonada+Discoba clade (i.e. the predominant concept of Excavata). A Metamonad+Discoba clade should therefore not be assumed when inferring deep-level evolutionary history in eukaryotes.
Collapse
Affiliation(s)
- Aaron A. Heiss
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Martin Kolisko
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Fleming Ekelund
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Matthew W. Brown
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Andrew J. Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alastair G. B. Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
13
|
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD, Andersson JO, Xu F, Yabuki A, Eme L, Zhang Q, Takishita K, Inagaki Y, Simpson AGB, Hashimoto T, Roger AJ. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol 2017; 1:0092. [PMID: 28474007 PMCID: PMC5411260 DOI: 10.1038/s41559-017-0092] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michelle M Leger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Martin Kolisko
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Keitaro Kume
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jeffrey D Silberman
- Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Jan O Andersson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Qianqian Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, People's Republic of China
| | - Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
14
|
Novák L, Zubáčová Z, Karnkowska A, Kolisko M, Hroudová M, Stairs CW, Simpson AGB, Keeling PJ, Roger AJ, Čepička I, Hampl V. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evol Biol 2016; 16:197. [PMID: 27716026 PMCID: PMC5052871 DOI: 10.1186/s12862-016-0771-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 09/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. RESULTS We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. CONCLUSIONS Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.
Collapse
Affiliation(s)
- Lukáš Novák
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| | - Zuzana Zubáčová
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| | - Anna Karnkowska
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Martin Kolisko
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Miluše Hroudová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Courtney W. Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | | | | | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Ivan Čepička
- Department of Zoology, Charles University, Faculty of Science, Prague, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| |
Collapse
|
15
|
Evolution of the microtubular cytoskeleton (flagellar apparatus) in parasitic protists. Mol Biochem Parasitol 2016; 209:26-34. [DOI: 10.1016/j.molbiopara.2016.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 01/16/2023]
|
16
|
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V. A Eukaryote without a Mitochondrial Organelle. Curr Biol 2016; 26:1274-84. [PMID: 27185558 DOI: 10.1016/j.cub.2016.03.053] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/05/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022]
Abstract
The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic; Department of Molecular Phylogenetics and Evolution, University of Warsaw, Warsaw 00478, Poland.
| | - Vojtěch Vacek
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Zuzana Zubáčová
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lukáš Novák
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Lael D Barlow
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Petr Soukal
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Miluše Hroudová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Čestmír Vlček
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic.
| |
Collapse
|