1
|
Zhang S, Xia X, Ke Y, Song S, Shen Z, Cheung S, Liu H. Population dynamics and interactions of Noctiluca scintillans and Mesodinium rubrum during their successive blooms in a subtropical coastal water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142349. [PMID: 33032128 DOI: 10.1016/j.scitotenv.2020.142349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
A time series field survey were conducted in Port Shelter, a subtropical coastal water in NW Pacific, beginning before the onset of a chain of Noctiluca scintillans and/or Mesodinium rubrum blooms, and ending after the blooms had declined. At the first mixed bloom stage, seed of N. scintillans and the consequent outbreak of both N. scintillans and M. rubrum were largely due to the physical forcing. Plenty food supply and their different feeding habits supported N. scintillans and M. rubrum to bloom massively and concomitantly. Following that, there was a small N. scintillans bloom followed by a small crest of M. rubrum. Their initiation and scale were mainly affected by limited food supply and/or the inferior food source. Sudden change of wind from mild northeast wind to strong southeast wind might contribute to the termination of N. scintillans bloom. Finally, physical accumulation was the most important driving factors of the formation and dispersal of the third and largest bloom of N. scintillans. Formation of these bloom events may involve vertical migration and/or the concentrating mechanism of M. rubrum and N. scintillans. Meanwhile, biotic interactions such as mutual supportive relationship between N. scintillans and M. rubrum, and O. hongkongense fed on the progametes of N. scintillans, as well as other abiotic factors like seawater temperature and rainfall, also play important roles in this series of bloom events. Our findings have important implications for coastal zones worldwide, which are affected recurrently by these two ubiquitous red tide-forming species.
Collapse
Affiliation(s)
- Shuwen Zhang
- Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, PR China
| | - Xiaomin Xia
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, PR China; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Ying Ke
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region
| | - Shuqun Song
- Key Lab of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Zhuo Shen
- Institute of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai, PR China
| | - Shunyan Cheung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region; Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region.
| |
Collapse
|
2
|
Valiadi M, de Rond T, Amorim A, Gittins JR, Gubili C, Moore BS, Iglesias-Rodriguez MD, Latz MI. Molecular and biochemical basis for the loss of bioluminescence in the dinoflagellate Noctiluca scintillans along the west coast of the USA. LIMNOLOGY AND OCEANOGRAPHY 2019; 64:2709-2724. [PMID: 32655189 PMCID: PMC7351363 DOI: 10.1002/lno.11309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/16/2019] [Indexed: 06/11/2023]
Abstract
The globally distributed heterotrophic dinoflagellate Noctiluca scintillans (Macartney) Kofoid & Swezy is well known for its dense blooms and prominent displays of bioluminescence. Intriguingly, along the west coast of the USA its blooms are not bioluminescent. We investigated the basis for the regional loss of bioluminescence using molecular, cellular and biochemical analyses of isolates from different geographic regions. Prominent differences of the non-bioluminescent strains were: (1) the fused luciferase and luciferin binding protein gene (lcf/lbp) was present but its transcripts were undetectable; (2) lcf/lbp contained multiple potentially deleterious mutations; (3) the substrate luciferin was absent, based on the lack of luciferin blue autofluorescence and the absence of luciferin derived metabolites; (4) although the cells possessed scintillons, the vesicles that contain the luminescent chemistry, electron microscopy revealed additional scintillon-like vesicles with an atypical internal structure; (5) cells isolated from the California coast were 43% smaller in size than bioluminescent cells from the Gulf of Mexico. Phylogenetic analyses based on the large subunit of rDNA did not show divergence of the non-bioluminescent population in relation to other bioluminescent N. scintillans from the Pacific Ocean and Arabian Sea. Our study demonstrates that gene silencing and the lack of the luciferin substrate have resulted in the loss of a significant dinoflagellate functional trait over large spatial scales in the ocean. As the bioluminescence system of dinoflagellates is well characterized, non-bioluminescent N. scintillans is an ideal model to explore the evolutionary and ecological mechanisms that lead to intraspecific functional divergence in natural dinoflagellate populations.
Collapse
Affiliation(s)
- Martha Valiadi
- University of Southampton, Ocean and Earth Science, National Oceanography Centre, Southampton SO14 3ZH, UK
- Present address: University of Exeter, Living Systems Institute, Biosciences, UK
| | - Tristan de Rond
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Ana Amorim
- Universidade de Lisboa, Faculdade de Ciências, Marine and Environmental Sciences Centre, 1749-016 Lisbon, Portugal
| | - John R Gittins
- University of Southampton, Ocean and Earth Science, National Oceanography Centre, Southampton SO14 3ZH, UK
| | - Chrysoula Gubili
- Hellenic Agricultural Organization, Fisheries Research Institute, Nea Peramos, Kavala, 64007, Macedonia, Greece
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - M Debora Iglesias-Rodriguez
- University of Southampton, Ocean and Earth Science, National Oceanography Centre, Southampton SO14 3ZH, UK
- Present address: University of California Santa Barbara, Department for Ecology, Evolution and Marine Biology, Santa Barbara, California, USA
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|