1
|
Haider MN, O'Higgins L, O'Shea R, Archer L, Wall DM, Verma N, Del Rosario Rodero M, Mehmood MA, Murphy JD, Bose A. Selecting optimal algal strains for robust photosynthetic upgrading of biogas under temperate oceanic climates. Biotechnol Adv 2025:108581. [PMID: 40258525 DOI: 10.1016/j.biotechadv.2025.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Biogas generated from anaerobic digestion can be upgraded to biomethane by photosynthetic biogas upgrading, using CO2 as a bioresource for algal cultivation. This allows upgrading technology to offer economic and environmental benefits to conventional physiochemical upgrading techniques (which can be energy-intensive and costly) by co-generating biomethane with high-value biomass. However, a critical challenge in implementing this technology in temperate oceanic climatic conditions (as found in Japan, and the northwest coasts of Europe and of North America, with average temperatures ranging between 5 and 20 °C) is the selection of algal strains that must be capable of sustained growth under lower ambient temperatures. Accordingly, this paper investigated the selection of algae that met seven key criteria: optimal growth at high pH (9-11); at alkalinity of 1.5-2.5 g inorganic carbon per litre; operation at low temperature (5-20 °C); tolerance to high CO2 concentrations (above 20 %); capability for mixotrophic cultivation; ability to accumulate high-value metabolites such (photosynthetic pigments and bioactive fatty acids); and ease of harvesting. Of the twenty-six algal species assessed and ranked using a Pugh Matrix, Anabaena sp. and Phormidium sp. were assessed as the most favourable species followed by Oscillatoria sp., Spirulina subsalsa, and Leptolyngbya sp. Adaptive laboratory evolution together with manipulation of abiotic factors could be effectively utilised to increase the efficiency, and economic feasibility, of use of the selected strain in a photosynthetic biogas upgrading system, through improvement of growth, and yield of high-value compounds.
Collapse
Affiliation(s)
- Muhammad Nabeel Haider
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Linda O'Higgins
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Richard O'Shea
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Lorraine Archer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - David M Wall
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Nikita Verma
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - María Del Rosario Rodero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jerry D Murphy
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Archishman Bose
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland.
| |
Collapse
|
2
|
Barla RJ, Raghuvanshi S, Gupta S. Reforming CO 2 bio-mitigation utilizing Bacillus cereus from hypersaline realms in pilot-scale bubble column bioreactor. Sci Rep 2024; 14:6354. [PMID: 38491100 PMCID: PMC10943127 DOI: 10.1038/s41598-024-56965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
The bubble column reactor of 10 and 20 L capacity was designed to bio-mitigate 10% CO2 (g) with 90% air utilizing thermophilic bacteria (Bacillus cereus SSLMC2). The maximum biomass yield during the growth phase was obtained as 9.14 and 10.78 g L-1 for 10 and 20 L capacity, respectively. The maximum removal efficiency for CO2 (g) was obtained as 56% and 85% for the 10 and 20 L reactors, respectively. The FT-IR and GC-MS examination of the extracellular and intracellular samples identified value-added products such as carboxylic acid, fatty alcohols, and hydrocarbons produced during the process. The total carbon balance for CO2 utilization in different forms confirmed that B. cereus SSLMC2 utilized 1646.54 g C in 10 L and 1587 g of C in 20 L reactor out of 1696.13 g of total carbon feed. The techno-economic assessment established that the capital investment required was $286.21 and $289.08 per reactor run of 11 days and $0.167 and $0.187 per gram of carbon treated for 10 and 20 L reactors, respectively. The possible mechanism pathways for bio-mitigating CO2 (g) by B. cereus SSLMC2 were also presented utilizing the energy reactions. Hence, the work presents the novelty of utilizing thermophilic bacteria and a bubble column bioreactor for CO2 (g) bio-mitigation.
Collapse
Affiliation(s)
- Rachael J Barla
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), BITS PILANI, Pilani, 333031, Rajasthan, India
| | - Smita Raghuvanshi
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), BITS PILANI, Pilani, 333031, Rajasthan, India.
| | - Suresh Gupta
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), BITS PILANI, Pilani, 333031, Rajasthan, India
| |
Collapse
|
3
|
Lykov A, Salmin A, Gevorgiz R, Zheleznova S, Rachkovskaya L, Surovtseva M, Poveshchenko O. Study of the Antimicrobial Potential of the Arthrospira platensis, Planktothrix agardhii, Leptolyngbya cf. ectocarpi, Roholtiella mixta nov., Tetraselmis viridis, and Nanofrustulum shiloi against Gram-Positive, Gram-Negative Bacteria, and Mycobacteria. Mar Drugs 2023; 21:492. [PMID: 37755105 PMCID: PMC10532822 DOI: 10.3390/md21090492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
The incidence of diseases brought on by resistant strains of micro-organisms, including tuberculosis, is rising globally as a result of the rapid rise in pathogenic micro-organism resistance to antimicrobial treatments. Secondary metabolites with potential for antibacterial activity are produced by cyanobacteria and microalgae. In this study, gram-positive (S. aureus, E. faecalis) and gram-negative (K. pneumoniae, A. baumannii, P. aeruginosa) bacteria were isolated from pulmonary tuberculosis patients receiving long-term antituberculosis therapy. The antimicrobial potential of extracts from the cyanobacteria Leptolyngbya cf. ectocarpi, Planktothrix agardhii, Arthrospira platensis, Rohotiella mixta sp. nov., Nanofrustulum shiloi, and Tetraselmis (Platymonas) viridis Rouchijajnen was evaluated. On mouse splenocytes and peritoneal macrophages, extracts of cyanobacteria and microalgae had inhibitory effects. In vitro studies have shown that cyanobacteria and microalgae extracts suppress the growth of bacteria and mycobacteria. At the same time, it has been demonstrated that cyanobacterial and microalgal extracts can encourage bacterial growth in a test tube. Additionally, the enhanced fucoxanthin fraction significantly reduced the development of bacteria in vitro. In a mouse experiment to simulate tuberculosis, the mycobacterial load in internal organs was considerably decreased by fucoxanthin. According to the information gathered, cyanobacteria and microalgae are potential sources of antibacterial compounds that can be used in the manufacturing of pharmaceutical raw materials.
Collapse
Affiliation(s)
- Alexander Lykov
- Novosibirsk Tuberculosis Research Institute MH RF, Okhotskaya 81 A, Novosibirsk 630040, Russia;
- Research Institute of Clinical and Experimental Lymphology—Filial of the Institute of Cytology and Genetics, Timakova 2, Novosibirsk 630060, Russia; (L.R.); (M.S.); (O.P.)
| | - Alexei Salmin
- Novosibirsk Tuberculosis Research Institute MH RF, Okhotskaya 81 A, Novosibirsk 630040, Russia;
| | - Ruslan Gevorgiz
- Kovalevsky Research Institute of Biology of Southern Seas RAS, Nakhimova 2, Sevastopol 299011, Russia; (R.G.); (S.Z.)
| | - Svetlana Zheleznova
- Kovalevsky Research Institute of Biology of Southern Seas RAS, Nakhimova 2, Sevastopol 299011, Russia; (R.G.); (S.Z.)
| | - Lyubov Rachkovskaya
- Research Institute of Clinical and Experimental Lymphology—Filial of the Institute of Cytology and Genetics, Timakova 2, Novosibirsk 630060, Russia; (L.R.); (M.S.); (O.P.)
| | - Maria Surovtseva
- Research Institute of Clinical and Experimental Lymphology—Filial of the Institute of Cytology and Genetics, Timakova 2, Novosibirsk 630060, Russia; (L.R.); (M.S.); (O.P.)
| | - Olga Poveshchenko
- Research Institute of Clinical and Experimental Lymphology—Filial of the Institute of Cytology and Genetics, Timakova 2, Novosibirsk 630060, Russia; (L.R.); (M.S.); (O.P.)
| |
Collapse
|