1
|
Masaeli F, Omoomi S, Shafiee F. DNA fragmentation factor 40-based therapeutic approaches for cancer: a review article. Med Oncol 2024; 41:264. [PMID: 39397131 DOI: 10.1007/s12032-024-02511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
DNA Fragmentation Factor (DFF) is a heterodimer protein involved in DNA fragmentation during apoptosis, which acts as a trigger downstream of caspase-3 activation. DFF40 catalytically active homo-oligomers break down chromosomal DNA. Previous scientific investigations have revealed a link between DFF40 expression changes and various cancers. DFF40 deletion or down-regulation has been observed in some cancers. Consequently, therapeutic strategies involving the DFF40 molecule compensating led to an increased rate of cancer cell apoptosis. In this review article, we aimed to introduce cancers with low expression of this protein first. The second part of this paper focuses on studies that utilized exogenous DFF40 protein produced by recombinant DNA technology and surveyed during in vitro and in vivo tests. Finally, compensation for diminished expression of the mentioned protein via gene therapy-based techniques to make up for this apoptotic molecule's low expression is the topic of the last part of this review article.
Collapse
Affiliation(s)
- Faezeh Masaeli
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| | - Saba Omoomi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran.
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Okunlola FO, Akawa OB, Soliman MES. Could the spanning of NAM-AD subsites by poly (ADP ribose) polymerase inhibitors potentiate their selective inhibitory activity in breast cancer treatment? Insight from biophysical computations. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1994562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Felix O. Okunlola
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Oluwole B. Akawa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E. S. Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Kulbay M, Bernier-Parker N, Bernier J. The role of the DFF40/CAD endonuclease in genomic stability. Apoptosis 2021; 26:9-23. [PMID: 33387146 DOI: 10.1007/s10495-020-01649-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
Abstract
Maintenance of genomic stability in cells is primordial for cellular integrity and protection against tumor progression. Many factors such as ultraviolet light, oxidative stress, exposure to chemical reagents, particularly mutagens and radiation, can alter the integrity of the genome. Thus, human cells are equipped with many mechanisms that prevent these irreversible lesions in the genome, as DNA repair pathways, cell cycle checkpoints, and telomeric function. These mechanisms activate cellular apoptosis to maintain DNA stability. Emerging studies have proposed a new protein in the maintenance of genomic stability: the DNA fragmentation factor (DFF). The DFF40 is an endonuclease responsible of the oligonucleosomal fragmentation of the DNA during apoptosis. The lack of DFF in renal carcinoma cells induces apoptosis without oligonucleosomal fragmentation, which poses a threat to genetic information transfer between cancerous and healthy cells. In this review, we expose the link between the DFF and genomic instability as the source of disease development.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS - Centre Armand-Frappier-Santé-Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
- Department of Medicine, Université de Montréal, 2900 Blvd. Edouard Montpetit, Montreal, QC, Canada
| | - Nathan Bernier-Parker
- Toronto Animal Health Partners Emergency and Specialty Hospital, 1 Scarsdale Road, North York, ON, M3B 2R2, Canada
| | - Jacques Bernier
- INRS - Centre Armand-Frappier-Santé-Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
4
|
Świętek M, Panchuk R, Skorokhyd N, Černoch P, Finiuk N, Klyuchivska O, Hrubý M, Molčan M, Berger W, Trousil J, Stoika R, Horák D. Magnetic Temperature-Sensitive Solid-Lipid Particles for Targeting and Killing Tumor Cells. Front Chem 2020; 8:205. [PMID: 32328477 PMCID: PMC7161697 DOI: 10.3389/fchem.2020.00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Magnetic and temperature-sensitive solid lipid particles (mag. SLPs) were prepared in the presence of oleic acid-coated iron oxide (IO-OA) nanoparticles with 1-tetradecanol and poly(ethylene oxide)-block-poly(ε-caprolactone) as lipid and stabilizing surfactant-like agents, respectively. The particles, typically ~850 nm in hydrodynamic size, showed heat dissipation under the applied alternating magnetic field. Cytotoxic activity of the mag.SLPs, non-magnetic SLPs, and iron oxide nanoparticles was compared concerning the mammalian cancer cell lines and their drug-resistant counterparts using trypan blue exclusion test and MTT assay. The mag.SLPs exhibited dose-dependent cytotoxicity against human leukemia cell lines growing in suspension (Jurkat and HL-60/wt), as well as the doxorubicin (Dox)- and vincristine-resistant HL-60 sublines. The mag.SLPs showed higher cytotoxicity toward drug-resistant sublines as compared to Dox. The human glioblastoma cell line U251 growing in a monolayer culture was also sensitive to mag.SLPs cytotoxicity. Staining of U251 cells with the fluorescent dyes Hoechst 33342 and propidium iodide (PI) revealed that mag.SLPs treatment resulted in an increased number of cells with condensed chromatin and/or fragmented nuclei as well as with blebbing of the plasma membranes. While the Hoechst 33342 staining of cell suggested the pro-apoptotic activity of the particles, the PI staining indicated the pro-necrotic changes in the target cells. These conclusions were confirmed by Western blot analysis of apoptosis-related proteins, study of DNA fragmentation (DNA laddering due to the inter-nucleosomal cleavage and DNA comets due to single strand breaks), as well as by FACS analysis of the patterns of cell cycle distribution (pre-G1 phase) and Annexin V/PI staining of the treated Jurkat cells. The induction of apoptosis or necrosis by the particles used to treat Jurkat cells depended on the dose of the particles. Production of the reactive oxygen species (ROS) was proposed as a potential mechanism of mag.SLPs-induced cytotoxicity. Accordingly, hydrogen peroxide and superoxide radical levels in mag.SLPs-treated Jurkat leukemic cells were increased by ~20–40 and ~70%, respectively. In contrast, the non-magnetic SLPs and neat iron oxides did not influence ROS levels significantly. Thus, the developed mag.SLPs can be used for effective killing of human tumor cells, including drug-resistant ones.
Collapse
Affiliation(s)
- Małgorzata Świętek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Rostyslav Panchuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Nadia Skorokhyd
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Peter Černoch
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Olha Klyuchivska
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Martin Hrubý
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Matúš Molčan
- Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Walter Berger
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Jirí Trousil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Banas T, Pitynski K, Okon K, Mikos M, Czerw AI, Deptała A, Ludwin A. Immunoexpression of DNA fragmentation factor 40, DNA fragmentation factor 45, and B-cell lymphoma 2 protein in normal human endometrium and uterine myometrium depends on menstrual cycle phase and menopausal status. Arch Med Sci 2018; 14:1254-1262. [PMID: 30393479 PMCID: PMC6209718 DOI: 10.5114/aoms.2017.69383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION DNA fragmentation factors 40 and 45 (DFF40 and DFF45) are final executors of apoptosis, and B-cell lymphoma 2 (Bcl-2) is a well-recognized apoptosis inhibitor. We aimed to evaluate DFF40, DFF45 and Bcl-2 immunoexpression in the normal human endometrium with respect to the glandular and stromal layer and in uterine myometrium. MATERIAL AND METHODS DFF40, DFF45, and Bcl-2 expression was assessed via immunohistochemistry in the endometrium and myometrium collected postmenopausally and premenopausally during the proliferative and secretory phases of the menstrual cycle. RESULTS Compared to the myometrium and stroma, endometrial glands showed the highest DFF40 and DFF45 expression in pre- and postmenopausal specimens. DFF45, but not DFF40, glandular expression dependent on menstrual cycle phase and DFF40 and DFF45 scoring was significantly lower in postmenopausal specimens. Significantly higher Bcl-2 expression was observed in proliferative glandular endometrium compared to secretory and postmenopausal specimens. No cycle- or menopause-dependent changes were reported for stromal or myometrial DFF40, DFF45 or Bcl-2 expression. DFF40, DFF45 and Bcl-2 expression was independent of age, age at menarche and menopause, BMI, menstrual cycle and menses lengths, parity and gravidity. CONCLUSIONS The study provides important evidence regarding menstrual cycle-dependent changes in the expression of DFF40, DFF45 and Bcl-2 in the normal human endometrium, especially in the glandular layer, and shows that their levels are stable in the normal uterine myometrium.
Collapse
Affiliation(s)
- Tomasz Banas
- Department of Gynecology and Oncology, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Pitynski
- Department of Gynecology and Oncology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Okon
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Aleksandra I Czerw
- Department of Public Health, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention, Medical University of Warsaw, Warsaw, Poland
| | - Artur Ludwin
- Department of Gynecology and Oncology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
6
|
Endometrial Polyps and Benign Endometrial Hyperplasia Have Increased Prevalence of DNA Fragmentation Factors 40 and 45 (DFF40 and DFF45) Together With the Antiapoptotic B-Cell Lymphoma (Bcl-2) Protein Compared With Normal Human Endometria. Int J Gynecol Pathol 2018; 37:431-440. [DOI: 10.1097/pgp.0000000000000442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Banas T, Pitynski K, Okon K, Winiarska A. Non-endometrioid and high-grade endometrioid endometrial cancers show DNA fragmentation factor 40 (DFF40) and B-cell lymphoma 2 protein (BCL2) underexpression, which predicts disease-free and overall survival, but not DNA fragmentation factor 45 (DFF45) underexpression. BMC Cancer 2018; 18:418. [PMID: 29653556 PMCID: PMC5899339 DOI: 10.1186/s12885-018-4333-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/04/2018] [Indexed: 12/23/2022] Open
Abstract
Background The expression of DNA fragmentation factor 45 (DFF45) and B-cell lymphoma 2 (BCL2) in glands of the normal human endometrium is related to phases of the menstrual cycle and decreases after menopause, whereas the expression of DNA fragmentation factor 40 (DFF40) is stable. Moreover, DF45, BCL2 and DFF40 underexpression has been reported in numerous malignancies, including uterine leiomyosarcomas. In this study, we aimed to investigate DFF45, BCL2 and DFF40 expression in endometrioid and non-endometrioid types of endometrial cancers (ECs). We also evaluated the correlations between DFF45, BCL2 and DFF40 expression levels and clinicopathological parameters and determined the value of these three proteins as prognostic markers of disease-free survival (DFS) and overall survival (OS). Methods Immunohistochemistry was performed to evaluate DFF45, BCL2 and DFF40 expression in 342 cases of ECs. Student’s t-test, the Mann-Whitney U-test, and the chi-squared test were used for the statistical analyses as appropriate. The Cox-Mantel test, Cox’s proportional hazard model, and relative risk analyses were used to evaluate associations between DFF40, DFF45, and BCL2 expression and clinicopathological characteristics. Results DFF40 and BCL2, but not DFF45, were significantly underexpressed in non-endometrioid and high-grade endometrioid ECs compared with low- and moderate-grade endometrioid ECs. Women with DFF40- and BCL2-negative tumors had higher risks of disease recurrence, lymph node involvement, lympho-vascular space infiltration, and deep myometrial invasion compared with women with DFF40- and BCL2-positive tumors. Additionally, women with DFF40- and BCL2-negative tumors had significantly lower OS and DFS than women with DFF40- and BCL2-positive tumors. A multivariable analysis of the model, including the clinicopathological characteristics and immunohistochemical results, showed that negative BCL2 expression, lymph node involvement, and high-stage and high-grade disease were independent predictors of OS, whereas negative BCL2 expression, lymph node involvement, and high-stage disease were independent predictors of DFS. Conclusions Compared with low- and moderate-grade endometrioid ECs, non-endometrioid and high-grade endometrioid ECs showed significant DFF40 and BCL2 underexpression. The absence of DFF40 and BCL2 expression negatively affects DFS and OS. Further prospective studies are warranted to assess the potential utility of DFF40 and BCL2 as targets in the diagnosis or treatment of ECs.
Collapse
Affiliation(s)
- Tomasz Banas
- Department of Gynecology and Oncology, Jagiellonian University, 21 Kopernika Street, 30-501, Krakow, Poland.
| | - Kazimierz Pitynski
- Department of Gynecology and Oncology, Jagiellonian University, 21 Kopernika Street, 30-501, Krakow, Poland
| | - Krzysztof Okon
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Aleksandra Winiarska
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
8
|
Banas T, Pitynski K, Okon K, Czerw A. DNA fragmentation factors 40 and 45 (DFF40/DFF45) and B-cell lymphoma 2 (Bcl-2) protein are underexpressed in uterine leiomyosarcomas and may predict survival. Onco Targets Ther 2017; 10:4579-4589. [PMID: 29075126 PMCID: PMC5609795 DOI: 10.2147/ott.s142979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES DNA fragmentation factors 40 and 45 (DFF40 and DFF45) are responsible for final DNA-laddering during apoptosis, whereas Bcl-2 (B-cell lymphoma 2) is an apoptosis inhibitor. Our aim was to investigate the expression of DFF40, DFF45, and Bcl-2 in uterine leiomyosarcomas (uLMS), leiomyomas (uLM), and the normal myometrium. Furthermore, the correlation between DFF40, DFF45, and Bcl-2 expression and clinicopathological parameters in leiomyosarcomas was assessed. Their prognostic value in disease-free survival (DFS) and overall survival (OS) was also calculated. MATERIALS AND METHODS This study included 53 cases of uLMS from patients matched for age and menopausal status with 53 cases of uLM and 53 controls of normal myometrium (uM). Case samples of uterine myometrium from leiomyosarcomas (uLMS-M) and leiomyomas (uLM-M) were also studied. Immunohistochemical scoring was undertaken for DFF40, DFF45, and Bcl-2. RESULTS DFF40, DFF45, and Bcl-2 were significantly underexpressed in uLMS compared with uLMS-M and uM. In uLMS samples, no correlation between the analyzed proteins was observed. Negative DFF40 and Bcl-2, but not DFF45, staining was a predictor of poorer DFS and OS in women with uLMS. uLM showed DFF40 and Bcl-2 overexpression compared with uM and uLM-M, with a significant positive correlation between DFF40 and DFF45. No differences in DFF40, DFF45, and Bcl-2 expression were observed between the uLMS-M, uLM-M, and uM samples, with a significant positive correlation between DFF40 and DFF45 expression. CONCLUSION DFF40, DFF45, and Bcl-2 are significantly underexpressed in uLMS, but only a lack of DFF40 and Bcl-2 negatively influences DFS and OS. Disruption of DFF40 and DFF45 expression was observed in uLMS, but not in uLM or control and case myometrium; this may play a role in tumor pathogenesis.
Collapse
Affiliation(s)
| | | | - Krzysztof Okon
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow
| | - Aleksandra Czerw
- Department of Public Health, Faculty of Health Science, Medical University of Warsaw.,Department of Health Promotion and Postgraduate Education, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
9
|
Kaur G, Singh N, Lingeshwar P, Siddiqui HH, Hanif K. Poly (ADP-ribose) polymerase-1: an emerging target in right ventricle dysfunction associated with pulmonary hypertension. Pulm Pharmacol Ther 2014; 30:66-79. [PMID: 25481773 DOI: 10.1016/j.pupt.2014.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/20/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022]
Abstract
Recently, inhibition of poly (ADP-ribose) polymerase-1 (PARP1) was shown to be protective in experimental pulmonary hypertension (PH) and prevented right ventricular hypertrophy (RVH) associated with it. However, molecular mechanism behind cardioprotection by PARP1 inhibition in PH still needs detailed exploration. Therefore, effect of inhibition of PARP1 on the right ventricle (RV) dysfunction was studied in monocrotaline (MCT) induced PH model. Following a single dose administration of MCT (60 mg/kg, s.c.), male Sprague-Dawley rats were treated with PARP1 inhibitor 1,5-Isoquinolinediol (ISO, 3 mg/kg, i.p.) for 35 days for preventive study and from day 21-35 for curative study. RV pressure (RVP) and RVH were measured after 35 days. Histophathological studies, PARP1 activity, mRNA and protein expression were studied in isolated RV. Oxidative and nitosative stress, inflammation and Matrix metalloproteinases (MMPs)/Tissue inhibitor of metalloproteinase 2 (TIMP2) were also assessed. Mitochondrial dysfunction was studied by mitochondrial membrane permeability and estimation of Nicotinamide adenine dinucleotide (NAD) and Adenosine triphosphate (ATP). Apoptosis in RV was assessed by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), caspase 3 activity and cleaved PARP1 expression. PARP1 inhibition significantly reversed the increase in RVP and RVH in both preventive and curative treatment in the MCT-injected rats. ISO lowered oxidative and nitrosative stress and inflammation and restored the balance of MMPs/TIMP2 expression. PARP1 inhibition prevented mitochondrial dysfunction and the release of cell death factors from mitochondria. ISO also decreased apoptosis by decreasing number of TUNEL positive cells, caspase 3 activity and PARP1 cleavage in RV. Thus, PARP1 inhibition ameliorated PH induced RV hypertrophy and may emerge as a new therapeutic target for PH.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Faculty of Pharmacy, Integral University, Lucknow 226001, India
| | - Neetu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Poorella Lingeshwar
- National Institute of Pharmaceutical Education and Research, Rae Bareli 229010, India
| | | | - Kashif Hanif
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; National Institute of Pharmaceutical Education and Research, Rae Bareli 229010, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
10
|
Joshi A, Mahfooz S, Maurya VK, Kumar V, Basanna CS, Kaur G, Hanif K, Jha RK. PARP1 during embryo implantation and its upregulation by oestradiol in mice. Reproduction 2014; 147:765-80. [DOI: 10.1530/rep-13-0588] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pregnancy requires successful implantation of an embryo, which occurs during a restricted period defined as ‘receptivity of the endometrium’ and is influenced by the ovarian steroids progesterone and oestradiol. The role of poly(ADP-ribose)polymerase-1 (PARP1) in apoptosis is well established. However, it is also involved in cell differentiation, proliferation and tissue remodelling. Previous studies have described the presence of PARP in the uterus, but its exact role in embryo implantation is not yet elucidated. Hence, in this study, we studied the expression of PARP1 in the uterus during embryo implantation and decidualisation, and its regulation by ovarian steroids. Our results show upregulation of the native form of PARP1 (∼116 kDa) in the cytosolic and nuclear compartments of implantation and non-implantation sites at day 5 (0500 h), followed by downregulation at day 5 (1000 h), during the embryo implantation period. The transcript level of Parp1 was also augmented during day 5 (0500 h). Inhibition of PARP1 activity by the drug EB-47 decreased the number of embryo implantation sites and blastocysts at day 5 (1000 h). Further, cleavage of native PARP1 was due to the activity of caspase-3 during the peri-implantation stage (day 5 (0500 h)), and is also required for embryo implantation, as inhibition of its activity compromised blastocyst implantation. The native (∼116 kDa) and cleaved (∼89 kDa) forms of PARP1 were both elevated during decidualisation of the uterus. Furthermore, the expression level of PARP1 in the uterus was found to be under the control of the hormone oestrogen. Our results clearly demonstrate that PARP1 participates in the process of embryo implantation.
Collapse
|
11
|
Zhu Z, Jin J, Xue N, Song X, Chen X. Development and validation of high-throughput screening assays for poly(ADP-ribose) polymerase-2 inhibitors. Anal Biochem 2013; 449:188-94. [PMID: 24382396 DOI: 10.1016/j.ab.2013.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/09/2013] [Accepted: 12/20/2013] [Indexed: 11/24/2022]
Abstract
Poly(ADP-ribose) polymerase-1 and -2 (PARP1/2) are two key facilitators of DNA repair and are implicated in the pathogenesis of cancers and several chronic diseases. Inhibitors of PARP1/2 have shown powerful therapeutic effects in the treatment of cancer, cerebral ischemia, and inflammation. In addition, evidence from several studies suggests unique functions for PARP2 in genome surveillance, spermatogenesis, adipogenesis, and T cell development, and PARP2-specific inhibitors might have many other applications. To acquire PARP1/2 inhibitors, many high-throughput screening (HTS) assays for PARP1 inhibitors have been developed. However, detailed screening assays for PARP2 inhibitors have not been reported. Herein, three HTS assays for PARP2 inhibitors were developed and validated with reference inhibitors in each case. The results suggest that the HTS assays for PARP2 inhibitors using chemical quantification of NAD(+), biotin-based quantification of PAR, and ELISA quantification of PAR are sensitive, robust, and cost effective.
Collapse
Affiliation(s)
- Zhixiang Zhu
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jing Jin
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Nina Xue
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiuyun Song
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiaoguang Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| |
Collapse
|
12
|
Bagheri F, Safarian S, Eslaminejad MB, Sheibani N. siRNA-mediated knock-down of DFF45 amplifies doxorubicin therapeutic effects in breast cancer cells. Cell Oncol (Dordr) 2013; 36:515-26. [PMID: 24277473 DOI: 10.1007/s13402-013-0157-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 11/25/2022] Open
Abstract
PURPOSE RNA interference (RNAi) has become a promising tool for cancer therapy. Small interfering RNAs (siRNAs) can synergistically enhance the cell killing effects of drugs used in cancer treatment. Here we examined the effects of siRNA-mediated DNA fragmentation factor 45 (DFF45) gene silencing on breast cancer cell viability, cell cycle arrest, and apoptosis in the presence and absence of doxorubicin. METHODS We designed three siRNAs, which target different regions of the DFF45 mRNA. Gene silencing was confirmed by real time RT-PCR and Western blot analyses. The impact of DFF45 siRNA, doxorubicin, and their combination on the viability, cell cycle and apoptosis of T-47D and MDA-MB-231 breast cancer cells were determined by MTT, PI staining, annexin V binding, caspase-3 activity, DNA laddering, and chromatin condensation assays. RESULTS Based on flow cytometric analyses, we found that silencing of DFF45 alone had little effect on apoptosis, especially in T-47D cells. However, when used in combination with doxorubicin (0.33 μM) a significant increase (P < 0.05) in apoptosis was observed in T-47D and MDA-MB-231 cells, i.e., ~2.5- and 3-fold, respectively. Caspase-3 activity, chromatin condensation, as well as DNA laddering supported increased apoptosis in the combinatorial treatment. Cell cycle arrest in both cell lines occurred at lower levels after siRNA + doxorubicin treatment compared to doxorubicin only. CONCLUSIONS Our data indicate that DFF45 gene silencing, when applied in combination with doxorubicin, may offer a novel therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Fatemeh Bagheri
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
13
|
He F, Zhang W, Zhang H. Apoptotic signaling pathways in uteri of rats with endometrial hyperplasia induced by ovariectomy combined with estrogen. Gynecol Obstet Invest 2013; 76:51-6. [PMID: 23751213 DOI: 10.1159/000351109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022]
Abstract
AIMS To explore a new reliable method inducing an animal model similar to the morphology and apoptotic signaling pathways in endometrial hyperplasia patients. METHODS After the rats were ovariectomized, estradiol benzoate (60 µg/100 g) was intramuscularly injected on alternate days for 4 weeks. The morphology in the uterus was observed under a light microscope and by electron microscopy. The expression levels of survivin/caspase-3 and Fas/FasL were checked by immunohistochemistry, Western blotting and real-time polymerase chain reaction. RESULTS After the models were induced, the edema and hypertrophy in uteri were observed 4 weeks later. The glands in the endometrium had increased, indented hyperplasia of glandular cells appeared, and a pseudo-stratified phenomenon occurred. Under a transmission electron microscope, free ribosomes had markedly increased and the nucleus was enlarged in the cytoplasm. Compared with the control group, the expression of survivin increased (p < 0.05) while that of caspase-3 and Fas/FasL declined (p < 0.05). CONCLUSIONS In the rat model of endometrial hyperplasia induced by ovariectomy with pharmacological estrogen add-back treatment, survivin, caspase-3 and Fas/FasL signaling pathways play an important role in regulating the apoptosis of glandular cells in uteri.
Collapse
Affiliation(s)
- Fengjie He
- Department of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xi'an, China.
| | | | | |
Collapse
|
14
|
ICAD deficiency in human colon cancer and predisposition to colon tumorigenesis: linkage to apoptosis resistance and genomic instability. PLoS One 2013; 8:e57871. [PMID: 23451280 PMCID: PMC3579889 DOI: 10.1371/journal.pone.0057871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/29/2013] [Indexed: 12/31/2022] Open
Abstract
We previously showed that DNA fragmentation factor, which comprises a caspase-3-activated DNase (CAD) and its inhibitor (ICAD), may influence the rate of cell death by generating PARP-1-activating DNA breaks. Here we tested the hypothesis that ICAD-deficient colon epithelial cells exhibiting resistance to death stimuli may accumulate additional genetic modifications, leading to a tumorigenic phenotype. We show that ICAD deficiency may be associated with colon malignancy in humans. Indeed, an examination of ICAD expression using immunohistochemistry in an array of both colon cancer and normal tissues revealed that ICAD expression levels were severely compromised in the cancerous tissues. Upon DNA damage caused by a low dose of irradiation, ICAD cells acquire a tumorigenic phenotype. Colon epithelial cells derived from ICAD mice showed a significant resistance to death induced by the colon carcinogen dimethylhydrazine in vitro and in mice. Such resistance was associated with a decrease in PARP-1 activation. In an animal model of dimethylhydrazine-induced colon tumorigenesis, ICAD−/− mice developed significantly higher numbers of tumors with markedly larger sizes than the wild-type counterparts. Interestingly, the phenotype of the ICAD−/− mice was not associated with a significant increase in the precancerous aberrant crypt foci suggesting a potential link to tumor progression rather than initiation. More importantly, ICAD deficiency was associated with severe genomic instability as assessed by array comparative genomic hybridization. Such genomic instability consisted most prominently of amplifications but with sizable deletions as compared to the wild-type counterparts affecting several cancer-related genes including RAF-1, GSN, LMO3, and Fzd6 independently of p53. Altogether, our results present a viable case for the involvement of ICAD deficiency in colon carcinogenesis and show that apoptosis and genomic instability may comprise the means by which such deficiency may contribute to the process of increasing susceptibility to carcinogen-induced tumorigenesis.
Collapse
|
15
|
Pizem J, Popovic M, Cör A. Expression of Gli1 and PARP1 in medulloblastoma: an immunohistochemical study of 65 cases. J Neurooncol 2010; 103:459-67. [PMID: 20953661 DOI: 10.1007/s11060-010-0431-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 09/20/2010] [Indexed: 12/29/2022]
Abstract
Activation of the sonic hedgehog (SHH) signalling pathway, which is involved in the formation of a significant proportion of medulloblastomas, is characterised by up-regulation and nuclear localisation of downstream transcription factor Gli1. Our aim was to analyse Gli1 expression by immunohistochemistry in a large group of medulloblastomas, to assess possible correlations with WNT (wingless) pathway activation and poly(ADP-ribose) polymerase-1 (PARP1) expression, previously shown to be associated with SHH pathway activation in a mouse model of medulloblastoma. We analysed expression and localisation of Gli1, β-catenin and PARP1 by immunohistochemistry in a series of 65 consecutive medulloblastomas. Gli1 was positive in 40 (61.5%) medulloblastomas, as revealed by either strong (21 cases) or mild (19 cases) nuclear reaction in more than 50% of tumour cells. Nuclear positivity for PARP1 was noted in all 65 cases, ranging from 46% to 100% (mean 80%) but was not correlated with Gli1 positivity. Gli1 was positive in 9 of 11 cases with nuclear localisation of β-catenin, signifying concurrent activation of SHH and WNT pathways. Overall survival of patients with strong nuclear reaction to Gli1 was better compared with patients with Gli1-negative medulloblastomas. Immunohistochemical detection of Gli1 could be useful in identifying medulloblastomas with SHH pathway activation. As revealed by nuclear reaction to Gli1, the SHH pathway is activated in approximately 60% of medulloblastomas. In some medulloblastomas, both SHH and WNT appear to be activated. PARP1 is highly expressed in medulloblastomas. It might be useful as a target to increase the effectiveness of current treatment modalities.
Collapse
Affiliation(s)
- Joze Pizem
- Medical Faculty, Institute of Pathology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
16
|
Banas T, Skotniczny K, Basta A. DFF45 expression in ovarian endometriomas. Eur J Obstet Gynecol Reprod Biol 2009; 146:87-91. [PMID: 19535198 DOI: 10.1016/j.ejogrb.2009.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/27/2009] [Accepted: 05/19/2009] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Endometriosis, defined as a spread of endometrium outside the uterus cavity, affects up to 30% women of reproductive age, with the ovaries being its most common localization. In the ectopic lesions, endometrial cells show abnormal proliferation and impaired apoptosis. The DNA destruction during apoptosis is a direct result of activation of the DFF40/DFF45 complex. DFF40 (DNA fragmentation factor of 40 kDa) is responsible for direct DNA fragmentation while DFF45 (DNA fragmentation factor of 45 kDa) acts not only as a DFF40 inhibitor, but also as its chaperone. Therefore, the presence of DFF45 is required for proper DFF40 synthesis. The aim of this study was to determine the DFF45 level in human ovarian endometriosis. STUDY DESIGN The endometriosis samples were collected from 43 affected women, while the 81 normal endometrial specimens were obtained from the control group. Western blot and immunohistochemistry tests were used to determine the DFF45 level in examined tissues. RESULTS The expression of DFF45 in normal human endometrium and ovarian endometriosis was confirmed using both the Western blot and the immunohistochemistry tests. In normal eutopic proliferatory endometrium, a lower DFF45 expression was observed compared with secretory endometrium, while no cyclic changes in DFF45 expression were observed in the ovarian endometriomas. In the normal eutopic endometrium, stronger DFF45 staining was noted in the endometrial glands in comparison to the stroma, irrespective of menstrual cycle phase. However, in the ovarian endometriosis no difference between the glandular layer and stroma in DFF45 immunoreactivity was appreciated. The lowest level of DFF45 was observed in ovarian endometriosis when compared with both normal eutopic proliferatory and secretory endometria using the Western blot and immunohistochemistry analysis. CONCLUSIONS A decreased level of DFF45 observed in ovarian endometriosis may be a part of an apoptosis-resistant mechanism enhancing the disease progression.
Collapse
Affiliation(s)
- Tomasz Banas
- Jagiellonian University, Chair of Obstetrics and Gynecology, 23 Kopernika Street, 30-501 Krakow, Poland.
| | | | | |
Collapse
|