1
|
Angerilli V, Fontana E, Lonardi S, Sbaraglia M, Borelli B, Munari G, Salmaso R, Guzzardo V, Spolverato G, Pucciarelli S, Pilati P, Hahne JC, Bergamo F, Zagonel V, Dei Tos AP, Sadanandam A, Loupakis F, Valeri N, Fassan M. Intratumor morphologic and transcriptomic heterogeneity in V600EBRAF-mutated metastatic colorectal adenocarcinomas. ESMO Open 2021; 6:100211. [PMID: 34271310 PMCID: PMC8282957 DOI: 10.1016/j.esmoop.2021.100211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Intratumor heterogeneity (ITH) is described as the presence of various clones within one tumor, each with their own unique features in terms of morphology, inflammation, genetics or transcriptomics. Heterogeneity provides the fuel for drug resistance; therefore, an accurate assessment of tumor heterogeneity is essential for the development of effective therapies. The purpose of this study was to dissect morphologic and molecular ITH in colorectal adenocarcinoma. MATERIALS AND METHODS A series of 120 V600EBRAF-mutated (V600EBRAFmt) consecutive metastatic colorectal adenocarcinomas was assessed for morphologic heterogeneity. The two heterogeneous components of each specimen underwent a histopathological, immunohistochemical and molecular characterization to evaluate: histologic variant, grading, tumor-infiltrating lymphocytes (TILs), mismatch repair proteins' expression, KRAS/BRAF/NRAS mutations, microsatellite instability (MSI) status and consensus molecular subtype (CMS). RESULTS Thirty-one out of 120 (25.8%) V600EBRAFmt primary colorectal adenocarcinomas presented a heterogeneous morphology. Among these, eight cases had adequate material for molecular profiling. Five out of the eight (62.5%) cases resulted instable at MSI testing. The majority (62.5%) of the samples showed a CMS4 phenotype based on gene expression profiling. Heterogeneity in CMS classification was observed in four out of eight cases. One out of eight cases presented significant heterogeneity in the number of TILs between the two components of the tumor. CONCLUSIONS Although the distribution of the immune infiltrate appears relatively conserved among heterogeneous areas of the same tumor, changes in gene expression profile and CMS occur in 50% of V600EBRAFmt adenocarcinoma cases in our small series and might contribute to variability in response to anticancer therapy and clinical outcomes. Assessment of morphological and molecular ITH is needed to improve colorectal cancer classification and to tailor anticancer treatments and should be included in the pathology report.
Collapse
Affiliation(s)
- V Angerilli
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - E Fontana
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - S Lonardi
- Medical Oncology Unit 3, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Castelfranco Veneto, Italy
| | - M Sbaraglia
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - B Borelli
- Department of Translational Research and New Technologies in Medicine and Surgery, Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, University of Pisa, Pisa, Italy
| | - G Munari
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - R Salmaso
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - V Guzzardo
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - G Spolverato
- Department of Surgery, Oncology & Gastroenterology, 1st Surgery Unit, University of Padua, Padua, Italy
| | - S Pucciarelli
- Department of Surgery, Oncology & Gastroenterology, 1st Surgery Unit, University of Padua, Padua, Italy
| | - P Pilati
- Surgery Unit, Veneto Institute of Oncology IOV-IRCCS, Castelfranco Veneto, Italy
| | - J C Hahne
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - F Bergamo
- Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - V Zagonel
- Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - A P Dei Tos
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - A Sadanandam
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - F Loupakis
- Department of Surgery, Oncology & Gastroenterology, 1st Surgery Unit, University of Padua, Padua, Italy
| | - N Valeri
- Division of Molecular Pathology, Institute of Cancer Research, London, UK; Division of Surgery and Cancer, Imperial College London, London, UK
| | - M Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy; Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
2
|
Droplet digital PCR revealed high concordance between primary tumors and lymph node metastases in multiplex screening of KRAS mutations in colorectal cancer. Clin Exp Med 2019; 19:219-224. [PMID: 30661213 DOI: 10.1007/s10238-019-00545-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
The proto-oncogene KRAS belongs among the most frequently mutated genes in all types of cancer and is also very important oncogene related to colorectal tumors. The detection of mutations in this gene in primary tumor is a predictive biomarker for the anti-EGFR therapy in metastatic CRC (mCRC); however, the patients with wild-type KRAS can also show resistance to the personalized medicine. The droplet-based digital PCR technology has improved the analytical sensitivity of the mutations detection, which led us to the idea about the optimization of this approach for KRAS testing. In this study, we report the application of ddPCR technology in order to analyze the presence of KRAS mutations in primary tumor and matched metastasis in lymph nodes (LNs) from patients with mCRC and address the question, whether the improvement in the detection method can lower the discrepancies of KRAS mutations detection between the primary tumor and regional LNs. Genomic DNA with wtKRAS and commercial DNA with mtKRAS (G12D) were used to set up the ddPCR reaction. Formalin-fixed paraffin-embedded tissues from primary tumor and positive lymph node from 31 patients with mCRC were analyzed using ddPCR and Sanger sequencing. KRAS status of primary tumors was known; however, the mutation status of lymph nodes was not detected previously. From 31 samples of primary tumors, our results corresponded to results from IVD kit in 30 cases. For one patient, ddPCR detected KRAS mutation in comparison with negative result of the IVD kit. In the samples of metastatic infiltrated LNs, ddPCR detected 16 samples as a WT KRAS and 15 lymph nodes showed positivity for KRAS mutation, whereby Sanger sequencing found KRAS mutations in 8 cases only. We also found two cases where genetic conditions of KRAS gene differed between primary tumor and infiltrated lymph node, both "low-grade" adenocarcinoma. Our study approved that ddPCR method is adequate technique with high sensitivity and in the future may be used as a diagnostic tool for evaluation of KRAS mutations, especially in infiltrated LNs of patients with mCRC.
Collapse
|
3
|
Jackson CL, Hang S, Hansen K, He M, Sung CJ, Quddus MR, Xiong M, Wang Y, Patel NR, Lawrence WD, Xiong J. Endometrial Adenocarcinomas With Significant Mucinous Differentiation: A Characterization of Intratumoral Heterogeneity of KRAS Mutations in Mucinous and Endometrioid Histologic Components. Int J Gynecol Cancer 2019; 28:241-247. [PMID: 29303928 DOI: 10.1097/igc.0000000000001168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE KRAS mutations are frequently seen in malignancies with mucinous morphology. In our previous study, mucinous endometrial carcinomas were associated with a significantly higher frequency of KRAS mutations as compared with matched conventional endometrioid carcinomas. This study expands our previous report by exploring possible intratumoral heterogeneity for KRAS gene mutations in the mucinous components of mucinous carcinomas (MCs) and endometrioid carcinomas with significant mucinous differentiation (ECSMD) versus their associated "usual" endometrioid components. MATERIALS AND METHODS KRAS-positive cases from our previous report were studied, including 10 MCs and 10 ECSMDs. The specimens were microscopically dissected to separately isolate morphologically mucinous and endometrioid components. Direct DNA sequencing for KRAS mutations at codons 12 and 13 using capillary electrophoresis were performed. RESULTS KRAS mutations were detected in the endometrioid components of 8 (80%) of 10 MCs and 3 (30%) of 10 ECSMDs. The endometrioid component of the ECSMD group was less frequently associated with KRAS mutation than the endometrioid component of the MC group, even when the mucinous component of the same tumor contained a mutation; the difference is statistically significant (P < 0.05). CONCLUSIONS Our current study shows that intratumoral heterogeneity for KRAS gene mutation was associated with ECSMD, but less frequently with MC. It is possible that when the mucinous component predominates, qualifying for an MC, KRAS mutations appear to be widespread, irrespective of the mucinous or nonmucinous differentiation of the tumor cells. The findings suggest that multiple samples for KRAS tests may be useful, especially in endometrioid carcinoma with significant mucinous differentiation.
Collapse
|
5
|
Hagan S, Orr MCM, Doyle B. Targeted therapies in colorectal cancer-an integrative view by PPPM. EPMA J 2013; 4:3. [PMID: 23356214 PMCID: PMC3584939 DOI: 10.1186/1878-5085-4-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/26/2012] [Indexed: 12/12/2022]
Abstract
In developed countries, colorectal cancer (CRC) is the third most common malignancy, but it is the second most frequent cause of cancer-related death. Clinicians are still faced with numerous challenges in the treatment of this disease, and future approaches which target the molecular features of the disorder will be critical for success in this disease setting. Genetic analyses of many solid tumours have shown that up to 100 protein-encoding genes are mutated. Within CRC, numerous genetic alterations have been identified in a number of pathways. Therefore, understanding the molecular pathology of CRC may present information on potential routes for treatment and may also provide valuable prognostic information. This will be particularly pertinent for molecularly targeted treatments, such as anti-vascular endothelial growth factor therapies and anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapy. KRAS and BRAF mutations have been shown to predict response to anti-EGFR therapy. As EGFR can also signal via the phosphatidylinositol 3-kinase (PI3K) kinase pathway, there is considerable interest in the potential roles of members of this pathway (such as PI3K and PTEN) in predicting treatment response. Therefore, a combined approach of new techniques that allow identification of these biomarkers alongside interdisciplinary approaches to the treatment of advanced CRC will aid in the treatment decision-making process and may also serve to guide future therapeutic approaches.
Collapse
Affiliation(s)
- Suzanne Hagan
- Department of Life Sciences Glasgow, Caledonian University, Glasgow, G4 0BA, UK
| | - Maria C M Orr
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Brendan Doyle
- Department of Histopathology, Trinity College, St. James's Hospital, Dublin, 8, Ireland
| |
Collapse
|