1
|
Józwiak M, Bauer M, Kamysz W, Kleczkowska P. Multifunctionality and Possible Medical Application of the BPC 157 Peptide-Literature and Patent Review. Pharmaceuticals (Basel) 2025; 18:185. [PMID: 40005999 PMCID: PMC11859134 DOI: 10.3390/ph18020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BPC 157, known as the "Body Protection Compound", is a pentadecapeptide isolated from human gastric juice that demonstrated its pleiotropic beneficial effects in various preclinical models mimicking medical conditions, such as tissue injury, inflammatory bowel disease, or even CNS disorders. Unlike many other drugs, BPC 157 has a desirable safety profile, since only a few side effects have been reported following its administration. Nevertheless, this compound was temporarily banned by the World Anti-Doping Agency (WADA) in 2022 (it is not currently listed as banned by the WADA). However, it has not been approved for use in standard medicine by the FDA and other global regulatory authorities due to the absence of sufficient and comprehensive clinical studies confirming its health benefits in humans. In this review, we summarize information on the biological activities of BPC 157, with particular reference to its mechanism of action and probable toxicity. This generated the attention of experts, as BPC 157 has been offered for sale on many websites. We also present recent interest in BPC 157 as reflected in a number of patent applications and granted patents.
Collapse
Affiliation(s)
- Michalina Józwiak
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland;
| | - Marta Bauer
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | | |
Collapse
|
2
|
Liu N, Wang S, Li M, Zhao N, Wang D, Zhang R, Yu M, Zhao L, Zhang S, Han F, Zhao Y, Liu Q. BET degrader exhibits lower antiproliferative activity than its inhibitor via EGR1 recruiting septins to promote E2F1-3 transcription in triple-negative breast cancer. Pharmacol Res 2024; 208:107377. [PMID: 39209080 DOI: 10.1016/j.phrs.2024.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The bromodomain and extraterminal domain (BET) family proteins serve as primary readers of acetylated lysine residues and play crucial roles in cell proliferation and differentiation. Dysregulation of BET proteins has been implicated in tumorigenesis, making them important therapeutic targets. BET-bromodomain (BD) inhibitors and BET-targeting degraders have been developed to inhibit BET proteins. In this study, we found that the BET inhibitor MS645 exhibited superior antiproliferative activity than BET degraders including ARV771, AT1, MZ1 and dBET1 in triple-negative breast cancer (TNBC) cells. Treatment with MS645 led to the dissociation of BETs, MED1 and RNA polymerase II from the E2F1-3 promoter, resulting in the suppression of E2F1-3 transcription and subsequent inhibition of cell growth in TNBC. In contrast, while ARV771 displaced BET proteins from chromatin, it did not significantly alter E2F1-3 expression. Mechanistically, ARV771 induced BRD4 depletion at protein level, which markedly increased EGR1 expression. This elevation of EGR1 subsequently recruited septin 2 and septin 9 to E2F1-3 promoters, enhancing E2F1-3 transcription and promoting cell proliferation rate in vitro and in vivo. Our findings provide valuable insights into differential mechanisms of BET inhibition and highlight potential of developing BET-targeting molecules as therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China.
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Munan Li
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Rui Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Mingxin Yu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Luoyi Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Fangbin Han
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China.
| | - Ying Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China.
| | - Quan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China.
| |
Collapse
|
3
|
Zhou L, Shan Y, Li J, Li M, Meng Z, Guo N. Early growth response 1 regulates dual‑specificity protein phosphatase 1 and inhibits cell migration and invasion of tongue squamous cell carcinoma. Oncol Lett 2024; 27:240. [PMID: 38623570 PMCID: PMC11017821 DOI: 10.3892/ol.2024.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/20/2024] [Indexed: 04/17/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors in the head and neck, and among the OSCCs, tongue squamous cell carcinoma (TSCC) is one of the most common types. Although therapy strategies have recently advanced, the prognosis of TSCC has not substantially improved. Metastasis is one of the main causes of patient mortality in TSCC; therefore, it is necessary to elucidate the mechanism by which TSCC metastasis is regulated. In the present study, the early growth response 1 (Egr-1) expression in TSCC was analyzed based on GEO datasets and the effect of Egr-1 in TSCC tumor cell migration and invasion was measured using Transwell assay. By overexpressing dual-specificity protein phosphatase 1 (DUSP1) in cells with Egr-1 knockdown using lentivirus infection, the role of DUSP1 in Egr-1-regulated TSCC cell migration and invasion was determined. By using luciferase and ChIP assays, the mechanism behind how DUSP1 is regulated by Egr-1 was detected. In the present study, it was demonstrated that Egr-1 was downregulated in TSCC and the knockdown of Egr-1 increased TSCC cell migration and invasion. The expression of Egr-1 was also correlated with DUSP1. The overexpression of DUSP1 in Egr-1 knockdown cells, reduced the level of cell migration and invasion. Furthermore, it was demonstrated that knockdown of Egr-1 inhibited the promoter activity of DUSP1 and the site through which Egr-1 regulates DUSP1 transcription was identified. In conclusion, the present study demonstrated that Egr-1 regulates TSCC cell migration and invasion through modulating DUSP1, suggesting the potential of Egr-1 and DUSP1 as therapy targets for TSCC.
Collapse
Affiliation(s)
- Longxun Zhou
- Department of Stomatology, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Yuqun Shan
- Clinical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Jun Li
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Min Li
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Zhen Meng
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Na Guo
- Department of Stomatology, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
4
|
Yamada T, Yamamori Y, Matsuda N, Nagamune H, Ohkura K, Tomoyasu T, Tabata A. Streptolysin S induces pronounced calcium-ion influx-dependent expression of immediate early genes encoding transcription factors. Sci Rep 2023; 13:13720. [PMID: 37608082 PMCID: PMC10444759 DOI: 10.1038/s41598-023-40981-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023] Open
Abstract
Anginosus group streptococci (AGS) are opportunistic human pathogens of the oral cavity. The β-hemolytic subgroup of Streptococcus anginosus subsp. anginosus secretes streptolysin S (SLS) and exhibits not only hemolytic activity but also cytotoxicity toward cultured human cell lines. However, the detailed mechanism of action of SLS and the cellular responses of host cells have not yet been fully clarified. To determine the pathogenic potential of SLS-producing β-hemolytic S. anginosus subsp. anginosus, the SLS-dependent response induced in the human oral squamous cell carcinoma HSC-2 cells was investigated to determine the pathogenic potential of SLS-producing β-hemolytic S. anginosus subsp. anginosus. This study revealed that the Ca2+ influx and the expression of immediate early genes (IEGs) encoding transcription factors such as early growth responses (EGRs) and activator protein-1 (AP-1) were greatly increased in HSC-2 cells incubated with the culture supernatant of SLS-producing β-hemolytic S. anginosus subsp. anginosus. Moreover, this SLS-dependent increase in expression was significantly suppressed by Ca2+ chelation, except for jun. These results suggest that SLS caused Ca2+ influx into the cells following greatly enhanced expression of IEG-encoding transcription factors. The results of this study may help in understanding the pathogenicity of SLS-producing AGS.
Collapse
Affiliation(s)
- Takuya Yamada
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
| | - Yugo Yamamori
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Nanami Matsuda
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Hideaki Nagamune
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Kazuto Ohkura
- Division of Clinical Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-Cho, Suzuka, Mie, 513-8670, Japan
| | - Toshifumi Tomoyasu
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Atsushi Tabata
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan.
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan.
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan.
| |
Collapse
|
5
|
DU K, Wu X, Ji X, Liang N, Li Z. Early growth response 1 promoted the invasion of glioblastoma multiforme by elevating HMGB1. J Neurosurg Sci 2023; 67:422-430. [PMID: 33297605 DOI: 10.23736/s0390-5616.20.05107-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and deadly glioma subtype. Early growth response 1 (EGR1) participates in the progression of several cancer types, but the expression and function of EGR1 in GBM was rarely investigated. METHODS The expressions of EGR1 in GBM were detected with qRT-PCR and immunohistochemistry in 12 pairs of fresh GBM tissues and 116 paraffin-embedded specimens. The patients were divided into high and low EGR1 groups according to the IHC score of EGR1, and the prognostic significances of different groups were evaluated with univariate and multivariate analyses. With in-vitro experiments, we assessed the role of EGR1 in the proliferation and invasion of GBM cells. RESULTS In our study, EGR1 was up-regulated in GBM tissues compared with tumor-adjacent normal tissues. High expression of EGR1 or HMGB1 were unfavorable prognostic biomarkers of GBM. Coexpression of EGR1 and HMGB1 could predict the prognosis of GBM more sensitively. EGR1 facilitated the proliferation and invasion of GBM cells. Moreover, EGR1 promoted the invasion, instead of proliferation, of GBM cells by elevating the expression of HMGB1. CONCLUSIONS ERG1 was a prognostic biomarker of GBM, and ERG1 and HMGB1 synergistically could predict the GBM prognosis more precisely. ERG1 could promote GBM cell invasion by inducing HMGB1 expression.
Collapse
Affiliation(s)
- Kai DU
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, China
| | - Xiaoyou Wu
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Xiaofei Ji
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Nan Liang
- Department of Neurosurgery, the Second Hospital of Shandong First Medical University, Taian, China
| | - Zheng Li
- Department of Neurosurgery, the Second Hospital of Shandong First Medical University, Taian, China -
| |
Collapse
|
6
|
Woodson CM, Kehn-Hall K. Examining the role of EGR1 during viral infections. Front Microbiol 2022; 13:1020220. [PMID: 36338037 PMCID: PMC9634628 DOI: 10.3389/fmicb.2022.1020220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 09/06/2023] Open
Abstract
Early growth response 1 (EGR1) is a multifunctional mammalian transcription factor capable of both enhancing and/or inhibiting gene expression. EGR1 can be activated by a wide array of stimuli such as exposure to growth factors, cytokines, apoptosis, and various cellular stress states including viral infections by both DNA and RNA viruses. Following induction, EGR1 functions as a convergence point for numerous specialized signaling cascades and couples short-term extracellular signals to influence transcriptional regulation of genes required to initiate the appropriate biological response. The role of EGR1 has been extensively studied in both physiological and pathological conditions of the adult nervous system where it is readily expressed in various regions of the brain and is critical for neuronal plasticity and the formation of memories. In addition to its involvement in neuropsychiatric disorders, EGR1 has also been widely examined in the field of cancer where it plays paradoxical roles as a tumor suppressor gene or oncogene. EGR1 is also associated with multiple viral infections such as Venezuelan equine encephalitis virus (VEEV), Kaposi's sarcoma-associated herpesvirus (KSHV), herpes simplex virus 1 (HSV-1), human polyomavirus JC virus (JCV), human immunodeficiency virus (HIV), and Epstein-Barr virus (EBV). In this review, we examine EGR1 and its role(s) during viral infections. First, we provide an overview of EGR1 in terms of its structure, other family members, and a brief overview of its roles in non-viral disease states. We also review upstream regulators of EGR1 and downstream factors impacted by EGR1. Then, we extensively examine EGR1 and its roles, both direct and indirect, in regulating replication of DNA and RNA viruses.
Collapse
Affiliation(s)
- Caitlin M. Woodson
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
7
|
Xu Y, Wang S, Cao X, Yuan Z, Getachew T, Mwacharo JM, Haile A, Lv X, Sun W. The Effect of EGR1 on the Proliferation of Dermal Papilla Cells. Genes (Basel) 2022; 13:genes13071242. [PMID: 35886025 PMCID: PMC9321982 DOI: 10.3390/genes13071242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Early growth response factor 1 (EGR1) is a zinc-finger transcription factor that plays a vital role in the development of hair follicles. According to our previous studies, EGR1 is a transcriptional promoter of the bone morphogenetic protein 7 (BMP7), a candidate gene involved in the proliferation of dermal papilla cells. Since hair follicles are the basis of lambskin pattern formation and dermal papilla cells (DPCs) act on hair follicle growth, in order to elucidate the role of EGR1 and hair follicles, this study aimed to investigate the biological role of EGR1 in DPCs. In our study, the EGR1 coding sequence (CDS) region was firstly cloned by polymerase chain reaction, and bioinformatics analysis was performed. Then, the function of EGR1 was detected by 5-ethynyl-2’-deoxyuridine (EDU) and Cell Counting Kit-8 (CCK8), and Western blot (WB) was conducted to analyze the cellular effect of EGR1 on DPCs. The proliferative effect of EGR1 on DPCs was also further confirmed by detecting its expression by qPCR and WB on marker genes of proliferation, including PCNA and CDK2. The sequence of the EGR1 CDS region of a lamb was successfully cloned, and its nucleic acid sequence was analyzed and found to be highly homologous to Rattus norvegicus, Mus musculus, Bos taurus and Homo sapiens. Predictive analysis of the protein encoded by EGR1 revealed that it is an extra-membrane protein, and not a secretory protein, with subcellular localization in the nucleus and cytoplasm. The proliferative effect of DPCs was significantly stronger (p < 0.01) in EGR1 up-regulated DPCs compared to the controls, while the opposite result was observed in EGR1 down-regulated DPCs. Markers of proliferation including PCNA and CDK2 also appeared to be differentially upregulated in EGR1 gene overexpression compared to the controls, with the opposite result in EGR1 gene downregulation. In summary, our study revealed that EGR1 promotes the proliferation of DPCs, and we speculate that EGR1 may be closely associated with hair follicle growth and development.
Collapse
Affiliation(s)
- Yeling Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.X.); (S.W.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.X.); (S.W.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
| | - Xiukai Cao
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (W.S.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.X.); (S.W.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China; (X.C.); (Z.Y.); (T.G.); (J.M.M.); (A.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (W.S.)
| |
Collapse
|
8
|
Saha SK, Islam SMR, Saha T, Nishat A, Biswas PK, Gil M, Nkenyereye L, El-Sappagh S, Islam MS, Cho SG. Prognostic role of EGR1 in breast cancer: a systematic review. BMB Rep 2021. [PMID: 34488929 PMCID: PMC8560464 DOI: 10.5483/bmbrep.2021.54.10.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
EGR1 (early growth response 1) is dysregulated in many cancers and exhibits both tumor suppressor and promoter activities, making it an appealing target for cancer therapy. Here, we used a systematic multiomics analysis to review the expression of EGR1 and its role in regulating clinical outcomes in breast cancer (BC). EGR1 expression, its promoter methylation, and protein expression pattern were assessed using various publicly available tools. COSMIC-based somatic mutations and cBioPortal-based copy number alterations were analyzed, and the prognostic roles of EGR1 in BC were determined using Prognoscan and Kaplan-Meier Plotter. We also used bc-GenEx-Miner to investigate the EGR1 co-expression profile. EGR1 was more often downregulated in BC tissues than in normal breast tissue, and its knockdown was positively correlated with poor survival. Low EGR1 expression levels were also associated with increased risk of ER+, PR+, and HER2-BCs. High positive correlations were observed among EGR1, DUSP1, FOS, FOSB, CYR61, and JUN mRNA expression in BC tissue. This systematic review suggested that EGR1 expression may serve as a prognostic marker for BC patients and that clinicopathological parameters influence its prognostic utility. In addition to EGR1, DUSP1, FOS, FOSB, CYR61, and JUN can jointly be considered prognostic indicators for BC.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - S. M. Riazul Islam
- Department of Computer Science and Engineering, Sejong University, Seoul 05006, Korea
| | - Tripti Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Afsana Nishat
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Lewis Nkenyereye
- Department of Computer and Information Security, Sejong University, Seoul 05006, Korea
| | - Shaker El-Sappagh
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Md. Saiful Islam
- School of Information and Communication Technology, Griffith University, QLD 4222, Australia
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
9
|
Shao S, Ju M, Lei J, Lu X, Li H, Wang D, Xia C. Egr‑1 inhibits colon cancer cell proliferation, migration and invasion via regulating CDKL1 at the transcriptional level. Oncol Rep 2021; 46:169. [PMID: 34165179 DOI: 10.3892/or.2021.8120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 11/05/2022] Open
Abstract
Colon cancer is one of the most common malignant tumors worldwide, and the molecular mechanisms involved in the oncogenesis and progression of colon cancer remain unclear. Early growth response 1 (Egr‑1) is a transcription factor that is closely associated with several tumor processes; however, its role in colon cancer is unknown. The present study aimed to explore the function and mechanism of transcription factor Egr‑1 in colon cancer progression. The association between Egr‑1 expression and the survival of patients with colon cancer was analyzed. Transwell assay was used to measure the migration and invasion of colon cancer cells. Cell Counting Kit‑8 assay was used to evaluate the cell proliferative ability. Reverse transcription‑quantitative PCR and western blot assays were used to identify whether Egr‑1 could regulate cyclin‑dependent kinase‑like 1 (CDKL1). Luciferase and chromatin immunoprecipitation assays were used to detect the mechanism by which Egr‑1 regulated CDKL1. Based on The Cancer Genome Atlas database, it was found that low Egr‑1 expression was associated with a poor prognosis in patients with colon cancer. Furthermore, overexpression of Egr‑1 inhibited colon cancer cell proliferation, migration, and invasion, whereas knockdown of Egr‑1 increased colon cancer cell proliferation, migration and invasion. Additionally, overexpression of Egr‑1‑induced cell proliferation, migration and invasion were reversed by overexpression of CDKL1. Furthermore, it was demonstrated that Egr‑1 regulated CDKL1 expression at the transcriptional level. The present study illustrated the mechanism of Egr‑1 regulating CDKL1, by which Egr‑1 affected colon cancer cell proliferation, migration and invasion. The current findings suggested that Egr‑1/CDKL1 may be a new promising target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Shanshan Shao
- Department of Oncology, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu 225300, P.R. China
| | - Man Ju
- Department of Anus and Intestine Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Jiayun Lei
- Department of Oncology, Liaocheng Dongchangfu People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xiangqian Lu
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Hongzhi Li
- Department of Oncology, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu 225300, P.R. China
| | - Darui Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Chaofeng Xia
- Department of Anus and Intestine Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
10
|
Wang Z, Niu J, Zhao C, Wang X, Ren J, Qu X. A Bimetallic Metal–Organic Framework Encapsulated with DNAzyme for Intracellular Drug Synthesis and Self‐Sufficient Gene Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaohui Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
11
|
Wang Z, Niu J, Zhao C, Wang X, Ren J, Qu X. A Bimetallic Metal-Organic Framework Encapsulated with DNAzyme for Intracellular Drug Synthesis and Self-Sufficient Gene Therapy. Angew Chem Int Ed Engl 2021; 60:12431-12437. [PMID: 33739589 DOI: 10.1002/anie.202016442] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Although chemotherapy is one of the most widely used cancer treatments, there are serious side effects, drug resistance, and secondary metastasis. To address these problems, herein we designed a bimetallic metal-organic framework (MOF) encapsulated with DNAzyme for co-triggered in situ cancer drug synthesis and DNAzyme-based gene therapy. Once in cancer cells, MOFs would disassemble and liberate copper ions, zinc ions, and DNAzyme under the acidic environment of lysosomes. Copper ions can catalyze the synthesis of the chemotherapeutic drug through copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction after being reduced to CuI ; zinc ions act as the cofactor to activate the cleavage activity of DNAzyme. The anticancer drug is synthesized intracellularly and can kill cancer cells on site to minimize side effects to normal organisms. The activated DNAzyme starts gene therapy to inhibit tumor proliferation and metastasis by targeting and cleaving oncogene substrates.
Collapse
Affiliation(s)
- Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaohui Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
12
|
Wang B, Guo H, Yu H, Chen Y, Xu H, Zhao G. The Role of the Transcription Factor EGR1 in Cancer. Front Oncol 2021; 11:642547. [PMID: 33842351 PMCID: PMC8024650 DOI: 10.3389/fonc.2021.642547] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Early growth response factor 1 (EGR1) is a transcription factor that is mainly involved in the processes of tissue injury, immune responses, and fibrosis. Recent studies have shown that EGR1 is closely related to the initiation and progression of cancer and may participate in tumor cell proliferation, invasion, and metastasis and in tumor angiogenesis. Nonetheless, the specific mechanism whereby EGR1 modulates these processes remains to be elucidated. This review article summarizes possible mechanisms of action of EGR1 in tumorigenesis and tumor progression and may serve as a reference for clinical efficacy predictions and for the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Expression and prognostic value of the transcription factors EGR1 and EGR3 in gliomas. Sci Rep 2020; 10:9285. [PMID: 32518380 PMCID: PMC7283475 DOI: 10.1038/s41598-020-66236-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Most glioblastoma patients have a dismal prognosis, although some survive several years. However, only few biomarkers are available to predict the disease course. EGR1 and EGR3 have been linked to glioblastoma stemness and tumour progression, and this study aimed to investigate their spatial expression and prognostic value in gliomas. Overall 207 gliomas including 190 glioblastomas were EGR1/EGR3 immunostained and quantified. A cohort of 21 glioblastomas with high P53 expression and available tissue from core and periphery was stained with double-immunofluorescence (P53-EGR1 and P53-EGR3) and quantified.EGR1 expression increased with WHO-grade, and declined by 18.9% in the tumour periphery vs. core (P = 0.01), while EGR3 expression increased by 13.8% in the periphery vs. core (P = 0.04). In patients with high EGR1 expression, 83% had methylated MGMT-promoters, while all patients with low EGR1 expression had un-methylated MGMT-promoters. High EGR3 expression in MGMT-methylated patients was associated with poor survival (HR = 1.98; 95%CI 1.22–3.22; P = 0.006), while EGR1 high/EGR3 high, was associated with poor survival vs. EGR1 high/EGR3 low (HR = 2.11; 95%CI 1.25–3.56; P = 0.005). EGR1 did not show prognostic value, but could be involved in MGMT-methylation. Importantly, EGR3 may be implicated in cell migration, while its expression levels seem to be prognostic in MGMT-methylated patients.
Collapse
|
14
|
Bioinformatics Analysis of Potential Key Genes in Trastuzumab-Resistant Gastric Cancer. DISEASE MARKERS 2019; 2019:1372571. [PMID: 31949544 PMCID: PMC6948351 DOI: 10.1155/2019/1372571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/03/2019] [Accepted: 11/09/2019] [Indexed: 12/24/2022]
Abstract
Background This study was performed to identify genes related to acquired trastuzumab resistance in gastric cancer (GC) and to analyze their prognostic value. Methods The gene expression profile GSE77346 was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were obtained by using GEO2R. Functional and pathway enrichment was analyzed by using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Search Tool for the Retrieval of Interacting Genes (STRING), Cytoscape, and MCODE were then used to construct the protein-protein interaction (PPI) network and identify hub genes. Finally, the relationship between hub genes and overall survival (OS) was analyzed by using the online Kaplan-Meier plotter tool. Results A total of 327 DEGs were screened and were mainly enriched in terms related to pathways in cancer, signaling pathways regulating stem cell pluripotency, HTLV-I infection, and ECM-receptor interactions. A PPI network was constructed, and 18 hub genes (including one upregulated gene and seventeen downregulated genes) were identified based on the degrees and MCODE scores of the PPI network. Finally, the expression of four hub genes (ERBB2, VIM, EGR1, and PSMB8) was found to be related to the prognosis of HER2-positive (HER2+) gastric cancer. However, the prognostic value of the other hub genes was controversial; interestingly, most of these genes were interferon- (IFN-) stimulated genes (ISGs). Conclusions Overall, we propose that the four hub genes may be potential targets in trastuzumab-resistant gastric cancer and that ISGs may play a key role in promoting trastuzumab resistance in GC.
Collapse
|
15
|
Yang Y, Wu F, Zhang J, Sun R, Li F, Li Y, Chang S, Wang L, Wang X, Liu L, Huang C. EGR1 interacts with DNMT3L to inhibit the transcription of miR-195 and plays an anti-apoptotic role in the development of gastric cancer. J Cell Mol Med 2019; 23:7372-7381. [PMID: 31515938 PMCID: PMC6815817 DOI: 10.1111/jcmm.14597] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
EGR1 regulates the expression of its downstream target genes and may exert different biological effects in different tumours. We found that the expression of EGR1 was increased in gastric cancer (GC), and silencing the expression of EGR1 promoted the apoptosis of GC cells. Moreover, overexpression of EGR1 repressed the apoptosis of GC cells. Bioinformatics analysis showed that EGR1 had binding sites at the upstream promoter region of miR‐195; ChIP assays were applied to determine EGR1 occupancy of the miR‐195 promoter. The RT‐PCR results showed that EGR1 suppressed the expression of miR‐195. The mechanism by which EGR1 acts as a transcriptional repressor is still unclear. Bioinformatics analysis showed that EGR1 may interact with DNMT3L. We confirmed that EGR1 and DNMT3L formed a complex, and EGR1 was an important player in the transcriptional control of miR‐195. Overexpression of miR‐195 inhibited proliferation and promoted apoptosis in GC cells. We found a well‐matched miR‐195 binding site at the AKT3 3′‐UTR. Double luciferase reporter assays showed that AKT3 was a target of miR‐195, and silencing AKT3 repressed cell proliferation and promoted apoptosis. Our results indicated EGR1 may interact with DNMT3L to inhibit the miR‐195‐AKT3 axis and regulate the GC cell apoptosis.
Collapse
Affiliation(s)
- Yang Yang
- School of Public Health, Xi'anJiaotong University Health Science Center, Xi'an, China
| | - Fei Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jing Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi, China
| | - Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yulong Li
- Department of gastroenterology, Shaanxi provincial people's hospital, Xi'an, China
| | - Su'e Chang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lumin Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Liying Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Choi EJ, Yoo NJ, Kim MS, An CH, Lee SH. Putative Tumor Suppressor Genes EGR1 and BRSK1 Are Mutated in Gastric and Colorectal Cancers. Oncology 2016; 91:289-294. [PMID: 27677186 DOI: 10.1159/000450616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The transcription factor-encoding EGR1 and the kinase-encoding BRSK1 are considered putative tumor suppressor genes (TSGs). However, EGR1 and BRSK1 mutations that could inactivate their functions are not reported in colorectal (CRC) and gastric (GC) cancers. METHODS There are mononucleotide repeats in EGR1 and BRSK1, which could be mutated in cancers with defects in mismatch repair, resulting in microsatellite instability (MSI). We analyzed 124 CRCs and 79 GCs for mutations and their intratumoral heterogeneities (ITHs). RESULTS Twenty-one out of 79 CRCs (26.6%) and 5 out of 34 GCs (14.7%) carrying high MSI (MSI-H) exhibited frameshift mutations. However, we found no such mutations in cancers with microsatellite stability. In addition, we studied ITH for these mutations in 16 cases of CRCs and observed that EGR1 and BRSK1 mutations exhibited ITH in 3 (18.8%) and 2 (12.5%) cases, respectively. CONCLUSION Our data in this study reveal that the TSG genes EGR1 and BRSK1 carry mutational ITH as well as frameshift mutations in MSI-H CRC and GC, which together may be features of GC and CRC with MSI-H. These results suggest that frameshift mutations of EGR1 and BRSK1 might play a role in tumorigenesis through TSG inactivation in CRC and GC.
Collapse
Affiliation(s)
- Eun Ji Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
17
|
Park SY, Kim JY, Lee SM, Chung JO, Lee KH, Jun CH, Park CH, Kim HS, Choi SK, Rew JS, Jung YD, Lee YH. Expression of early growth response gene-1 in precancerous lesions of gastric cancer. Oncol Lett 2016; 12:2710-2715. [PMID: 27698846 DOI: 10.3892/ol.2016.4962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/02/2016] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated a correlation between the expression of early growth response gene-1 (EGR-1) and the progression of gastric cancers at advanced stages. However, the effects of EGR-1 expression on human gastric cancer progression, particularly on precancerous lesions, have not been investigated. In this study, we evaluate EGR-1 expression levels in target mucosa from patients with early gastric cancer and precancerous lesions, and assess whether EGR-1 expression affects the oncogenic phenotypes of human gastric cancer cells. EGR-1 protein levels were measured in tissues from subjects with normal mucosa (n=6), low-grade dysplasia (n=6), high-grade dysplasia (n=4) and adenocarcinoma (n=3) using enzyme-linked immunosorbent assay and immunohistochemistry analyses. We also investigated the role of EGR-1 in tumor cell behavior by transiently expressing a dominant active EGR-1 variant in cultured cells. A positive correlation was observed between EGR-1 expression and gastric carcinogenesis (P=0.016). Furthermore, there was an increase in nuclear and cytoplasmic expression of EGR-1 in accordance with the histological grade (P for trends=0.003 and 0.003, respectively), and a positive association between the sum of the nuclear and cytoplasmic EGR-1 expression values and the histological grade (P=0.003). In addition, transient overexpression of EGR-1 enhanced cell proliferation, stimulated cell migration, and promoted the phosphorylation of p38 MAPK and AKT in gastric cancer cells in vitro. Our findings demonstrate that EGR-1 may contribute to the early stages of gastric carcinogenesis via the alteration of tumor cell behaviors.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Ji-Young Kim
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Su-Mi Lee
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Jin Ook Chung
- Department of Endocrinology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Chung-Hwan Jun
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Chang-Hwan Park
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Hyun-Soo Kim
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Sung-Kyu Choi
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Jong-Sun Rew
- Department of Gastroenterology and Hepatology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Young-Do Jung
- Department of Biomedical Science and Technology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Yong Han Lee
- Department of Biological Sciences, College of Biological Science and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
18
|
Yoon TM, Kim SA, Lee DH, Lee JK, Park YL, Lee KH, Chung IJ, Joo YE, Lim SC. EGR1 regulates radiation-induced apoptosis in head and neck squamous cell carcinoma. Oncol Rep 2015; 33:1717-22. [PMID: 25710185 DOI: 10.3892/or.2015.3747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/22/2014] [Indexed: 11/06/2022] Open
Abstract
The transcription factor, early growth response 1 (EGR1) belongs to the early growth response family. EGR1 regulates the transactivation of genes involved in growth inhibition and apoptosis by ionizing radiation. The aims of the present study were to evaluate the expression of EGR1, and its relationship to prognosis, in patients with advanced laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) receiving chemoradiation therapy, and to observe the effect of EGR1 on the apoptosis of head and neck squamous cell carcinoma (HNSCC) cells treated with ionizing radiation. Expression of the EGR1 protein in tissue samples from patients with LHSCC was detected by immunohistochemistry. A high expression of the EGR1 protein was observed in 37 (67.3%) of the 55 LHSCC tissue samples examined. A high EGR1 protein expression in patients with LHSCC who were treated with chemoradiation was significantly associated with improved larynx-preservation survival (p=0.04). The 5-year disease-specific survival rate with larynx preservation was 59% in patients with a high EGR1 protein expression vs. 30% in those with a low EGR1 protein expression. In the human HNSCC cell line, PCI50, EGR1 mRNA expression was induced at 30-60 min, and EGR1 protein expression was induced at 60-120 min, after exposure to a 5 Gy dose of ionizing radiation. To evaluate the impact of EGR1 on radiation-induced apoptosis, we used small‑interfering RNA to knock down endogenous EGR1 gene expression. Cleaved caspase 3, cleaved caspase 7, and cleaved PARP were decreased, while XIAP was increased, in EGR1-knockdown PCI50 cells compared to negative control PCI50 cells, at all observed post-irradiation time points. These findings suggested that EGR1 knockdown inhibits radiation-induced apoptosis. In conclusion, EGR1 may be associated with larynx-preservation survival, through the regulation of radiation-induced apoptosis in patients with LHSCC treated with chemoradiation. Although further investigations are required to support the present study, EGR1 serves as a favorable biomarker of radiosensitivity in the treatment of LHSCC.
Collapse
Affiliation(s)
- Tae Mi Yoon
- Department of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sun-Ae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Dong Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Joon Kyoo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ik-Joo Chung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sang Chul Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
19
|
Abstract
The cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in regulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk6(-/-) HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more susceptible to 5-fluorouracil treatment. We find that activation of HSCs requires CDK6, which interferes with the transcription of key regulators, including Egr1. Transcriptional profiling of HSCs is consistent with the central role of Egr1. The impaired repopulation capacity extends to BCR-ABL(p210+) LSCs. Transplantation with BCR-ABL(p210+)-infected bone marrow from Cdk6(-/-) mice fails to induce disease, although recipient mice do harbor LSCs. Egr1 knock-down in Cdk6(-/-) BCR-ABL(p210+) LSKs significantly enhances the potential to form colonies, underlining the importance of the CDK6-Egr1 axis. Our findings define CDK6 as an important regulator of stem cell activation and an essential component of a transcriptional complex that suppresses Egr1 in HSCs and LSCs.
Collapse
|