1
|
Chen Z, Liu Y, Lyu M, Chan CH, Sun M, Yang X, Qiao S, Chen Z, Yu S, Ren M, Lu A, Zhang G, Li F, Yu Y. Classifications of triple-negative breast cancer: insights and current therapeutic approaches. Cell Biosci 2025; 15:13. [PMID: 39893480 PMCID: PMC11787746 DOI: 10.1186/s13578-025-01359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and challenging type of cancer, characterized by the absence of specific receptors targeted by current therapies, which limits effective targeted treatment options. TNBC has a high risk of recurrence and distant metastasis, resulting in lower survival rates. Additionally, TNBC exhibits significant heterogeneity at histopathological, proteomic, transcriptomic, and genomic levels, further complicating the development of effective treatments. While some TNBC subtypes may initially respond to chemotherapy, resistance frequently develops, increasing the risk of aggressive recurrence. Therefore, precisely classifying and characterizing the distinct features of TNBC subtypes is crucial for identifying the most suitable molecular-based therapies for individual patients. In this review, we provide a comprehensive overview of these subtypes, highlighting their unique profiles as defined by various classification systems. We also address the limitations of conventional therapeutic approaches and explore innovative biological strategies, all aimed at advancing the development of targeted and effective therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Ziqi Chen
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Yumeng Liu
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Minchuan Lyu
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Chi Ho Chan
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Meiheng Sun
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Xin Yang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Shuangying Qiao
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Zheng Chen
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Sifan Yu
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Meishen Ren
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Aiping Lu
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Ge Zhang
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Fangfei Li
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Yuanyuan Yu
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China.
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
2
|
Luo B, Liu X, Zhang Q, Liang G, Zhuang Y. ALG3 predicts poor prognosis and increases resistance to anti-PD-1 therapy through modulating PD-L1 N-link glycosylation in TNBC. Int Immunopharmacol 2024; 140:112875. [PMID: 39116492 DOI: 10.1016/j.intimp.2024.112875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE The aim of this study was to assess the prognostic significance of α-1,3-mannitrotransferase (ALG3) in triple-negative breast cancer (TNBC) and investigate its impact and potential mechanism on the efficacy of anti-PD-1 therapy. METHODS Bioinformatics analysis was used to examine the expression of ALG3 in cancer patients using UACLAN and other databases. The associations of the ALG3 gene and the clinicopathological features of breast cancer were examined with bc-GenExMiner database. Correlation between ALG3 expression and survival was further established utilizing the Kaplan-Meier Plotter database. Immunohistochemistry (IHC) was used to analyze the expression of ALG3 in cohort of breast cancer patients from Hubei cancer hospital to confirmed the prognostic value of ALG3 in TNBC. The effect of ALG3 on the levels of infiltrating immune cells was also analyzed. And the mutation module within cBioPortal was utilized to visualize ALG3 mutations in BRCA. The CRISPR/Cas9 technique was used to establish ALG3 low-expression TNBC cell lines. Influence of ALG3 expression on cancer cell proliferation and chemotherapeutic responsiveness was scrutinized in vitro. Animal models were constructed to evaluate the alteration of tumor sensitivity to anti-PD-1 therapy with decreased ALG3 expression. And flow cytometry and IHC were used to investigate the tumor immune microenvironment. Association of PD-L1 Glycosylation and ALG3 expression were also investigated by western blot. RESULTS ALG3 expression was elevated in TNBC and was strikingly linked to unfavorable clinical features such as lymphatic node metastasis, high NPI, advanced stage and age, etc. Furthermore, high ALG3 expression was associated with shorter OS in TNBC patients. Mechanistically, ALG3 expression was negatively correlated with the infiltration of CD8+ T cells, CD4+ T cells, and NK cells. ALG3-KO cells had increased sensitivity to chemotherapeutic agents. In animal models, the volume of ALG3-KO tumors was lower than the control group with immunotherapy. ALG3-KO tumors showed an increased proportion of CD8+ T cells, while a decreased proportion of regulatory T cells and M2-type macrophages. The expression level of PD-L1 protein was not affected by ALG3 level, but the glycosylation level was significantly decreased in tumor. Similarly, the glycosylation level of PD-L1 is reduced in ALG3-KO cell in vitro. Additionally, ALG3 knockout lead to reduced tolerance of tumor cells to IFN-γ, thereby enhancing the efficacy of immunotherapy. CONCLUSION ALG3 is a potential biomarker for poor prognosis of TNBC and may reduce the efficacy of immunotherapy by modulating the tumor microenvironment and glycosylation of PD-L1.
Collapse
Affiliation(s)
- Bo Luo
- Department of Radiotherapy Center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei, China; Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Xiangdong Liu
- Department of Radiotherapy Center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Qu Zhang
- Department of Radiotherapy Center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gai Liang
- Department of Radiotherapy Center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhuang
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei, China; Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Nandi SK, Pradhan A, Das B, Das B, Basu S, Mallick B, Dutta A, Sarkar DK, Mukhopadhyay A, Mukhopadhyay S, Bhattacharya R. Kaempferol attenuates viability of ex-vivo cultured post-NACT breast tumor explants through downregulation of p53 induced stemness, inflammation and apoptosis evasion pathways. Pathol Res Pract 2022; 237:154029. [PMID: 35961057 DOI: 10.1016/j.prp.2022.154029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/15/2023]
Abstract
Early onset of chemotherapy evasion is a therapeutic challenge. Chemotherapy-induced upregulation of stem cell markers imparts invasiveness and metastatic property to the resident tumor. The efficacy of Kaempferol in attenuating epithelial to mesenchymal transition has earlier been established in the breast cancer cell. In our study population, progression-free survival was observed to be statistically more significant in post-NACT low-grade tumors than the high-grade tumors. Further, in post-NACT TNBCs, high-grade tumors showed a preponderance of strong nuclear p53 expression and very low expression of Caspase 3, indicating that, altered p53 expression predisposes these tumors to apoptosis escape and up-regulation of stemness markers. Herein, we report the robust efficacy of Kaempferol on ex-vivo grown breast tumors, derived from post-NACT TNBC patients, through downregulation of nuclear p53, CD44, ALDH1, NANOG, MDR1, Ki67, BCL2 and upregulation of Caspase 3. Such tumors also showed concurrent deregulated RNA and protein expression of CD44, NANOG, ALDH1 and MDR1 with upregulation of Caspase 3 and cleaved Caspase 3, upon Kaempferol treatment. Validation of efficacy of the treatment dosage of Kaempferol through immunophenotyping on MDA-MB-231, suggested that Kaempferol at its IC-50 dosage was effective against CD44 and CD326 positive breast cancer through deregulating their expression. Protein-protein interaction network through STRING pathway analysis and co-expression study of candidate proteins showed the highest degree of co-expression of p53 and KI-67, CD44, NF- kappaB, ALDH1, NANOG, MDR1, and BCL2. Thus, potentially targetable oncogenic protein markers, that are susceptible to downregulation by Kaempferol, provides insight into biomarker-driven therapeutic approaches with it.
Collapse
Affiliation(s)
- Sourav Kumar Nandi
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | - Ayan Pradhan
- Department of General Surgery, Institute of Post graduate Medical Education & Research and SSKM Hospital, 244B AJC Bose Road, Kolkata 700020, India
| | - Basudeb Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Biswajit Das
- Department of Pathology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | - Sudarshana Basu
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | - Bibekanand Mallick
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Amitava Dutta
- Department of Pathology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | - Diptendra Kumar Sarkar
- Department of General Surgery, Institute of Post graduate Medical Education & Research and SSKM Hospital, 244B AJC Bose Road, Kolkata 700020, India
| | - Ashis Mukhopadhyay
- Department of Haematooncology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | - Soma Mukhopadhyay
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India.
| | - Rittwika Bhattacharya
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India.
| |
Collapse
|
4
|
Characterization of the Metabolome of Breast Tissues from Non-Hispanic Black and Non-Hispanic White Women Reveals Correlations between Microbial Dysbiosis and Enhanced Lipid Metabolism Pathways in Triple-Negative Breast Tumors. Cancers (Basel) 2022; 14:cancers14174075. [PMID: 36077608 PMCID: PMC9454857 DOI: 10.3390/cancers14174075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary We previously showed that breast tumor tissues from women display an imbalance in abundance and composition of microbiota compared to normal healthy breast tissues. It is unknown whether these differences in breast tumor microbiota may be driven by alterations in microbial metabolites, leading to potentially protective or pathogenic consequences. The aim of our study was to conduct global metabolic profiling on normal and breast tumor tissues to identify differences in metabolite profiles and to determine whether breast microbial dysbiosis may be associated with enrichment of microbial metabolites in triple-negative breast cancer (TNBC) which disproportionately affects women of African ancestry. We observed significant correlations between elevated lipid metabolism pathways and microbial dysbiosis in TNBC tissues from both non-Hispanic black and white women. This is the first study to report an association between breast microbial dysbiosis and alterations in host metabolic pathways in breast tumors, including TNBC, of non-Hispanic black and non-Hispanic white women. Abstract Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that is non-responsive to hormonal therapies and disproportionately impact women of African ancestry. We previously showed that TN breast tumors have a distinct microbial signature that differs from less aggressive breast tumor subtypes and normal breast tissues. However, it is unknown whether these differences in breast tumor microbiota may be driven by alterations in microbial metabolites, leading to potentially protective or pathogenic consequences. The goal of this global metabolomic profiling study was to investigate alterations in microbial metabolism pathways in normal and breast tumor tissues, including TNBC, of non-Hispanic black (NHB) and non-Hispanic white (NHW) women. In this study, we profiled the microbiome (16S rRNA) from breast tumor tissues and analyzed 984 metabolites from a total of 51 NHB and NHW women. Breast tumor tissues were collected from 15 patients with TNBC, 12 patients with less aggressive luminal A-type (Luminal) breast cancer, and 24 healthy controls for comparison using UHPLC-tandem mass spectrometry. Principal component analysis and hierarchical clustering of the global metabolomic profiling data revealed separation between metabolic signatures of normal and breast tumor tissues. Random forest analysis revealed a unique biochemical signature associated with elevated lipid metabolites and lower levels of microbial-derived metabolites important in controlling inflammation and immune responses in breast tumor tissues. Significant relationships between the breast microbiome and the metabolome, particularly lipid metabolism, were observed in TNBC tissues. Further investigations to determine whether alterations in sphingolipid, phospholipid, ceramide, amino acid, and energy metabolism pathways modulate Fusobacterium and Tenericutes abundance and composition to alter host metabolism in TNBC are necessary to help us understand the risk and underlying mechanisms and to identify potential microbial-based targets.
Collapse
|
5
|
Vtorushin S, Dulesova A, Krakhmal N. Luminal androgen receptor (LAR) subtype of triple-negative breast cancer: molecular, morphological, and clinical features. J Zhejiang Univ Sci B 2022; 23:617-624. [PMID: 35953756 DOI: 10.1631/jzus.b2200113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
According to the classification presented by Lehmann BD (2016), triple-negative breast cancer (TNBC) is a heterogeneous group of malignant tumors with four specific subtypes: basal-like (subtype 1 and subtype 2), mesenchymal, and luminal androgen receptor (LAR) subtypes. The basal-like subtypes of carcinomas predominate in this group, accounting for up to 80% of all cases. Despite the significantly lower proportions of mesenchymal and LAR variants in the group of breast carcinomas with a TNBC profile, such tumors are characterized by aggressive biological behavior. To this end, the LAR subtype is of particular interest, since the literature on such tumors presents different and even contradictory data concerning the disease course and prognosis. This review is devoted to the analysis of the relevant literature, reflecting the main results of studies on the molecular properties and clinical features of the disease course of LAR-type TNBC carcinomas.
Collapse
Affiliation(s)
- Sergey Vtorushin
- Department of Pathology, Siberian State Medical University Ministry of Health of Russia, Tomsk 634050, Russia.,Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia
| | - Anastasia Dulesova
- Department of Pathology, Republican Clinical Oncological Dispensary Ministry of Health, Tatarstan Republic, Kazan 420029, Russia
| | - Nadezhda Krakhmal
- Department of Pathology, Siberian State Medical University Ministry of Health of Russia, Tomsk 634050, Russia. .,Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia.
| |
Collapse
|
6
|
E-jet 3D printed drug delivery implants to inhibit growth and metastasis of orthotopic breast cancer. Biomaterials 2019; 230:119618. [PMID: 31757530 DOI: 10.1016/j.biomaterials.2019.119618] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 12/20/2022]
Abstract
Drug-loaded implants have attracted considerable attention in cancer treatment due to their precise delivery of drugs into cancer tissues. Contrary to injected drug delivery, the application of drug-loaded implants remains underutilized given the requirement for a surgical operation. Nevertheless, drug-loaded implants have several advantages, including a reduction in frequency of drug administration, minimal systemic toxicity, and increased delivery efficacy. Herein, we developed a new, precise, drug delivery device for orthotopic breast cancer therapy able to suppress breast tumor growth and reduce pulmonary metastasis using combination chemotherapy. Poly-lactic-co-glycolic acid scaffolds were fabricated by 3D printing to immobilize 5-fluorouracil and NVP-BEZ235. The implantable scaffolds significantly reduced the required drug dosages and ensured curative drug levels near tumor sites for prolonged period, while drug exposure to normal tissues was minimized. Moreover, long-term drug release was achieved, potentially allowing one-off implantation and, thus, a major reduction in the frequency of drug administration. This drug-loaded scaffold has great potential in anti-tumor treatment, possibly paving the way for precise, effective, and harmless cancer therapy.
Collapse
|
7
|
Antineoplastic effects of selective CDK9 inhibition with atuveciclib on cancer stem-like cells in triple-negative breast cancer. Oncotarget 2018; 9:37305-37318. [PMID: 30647871 PMCID: PMC6324664 DOI: 10.18632/oncotarget.26468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Treatment options for triple-negative breast cancer (TNBC) are limited due to the lack of efficient targeted therapies, frequently resulting in recurrence and metastatic disease. Accumulating evidence suggests that a small population of cancer stem-like cells (CSLCs) is responsible for tumor recurrence and therapy resistance. Here we investigated the role of cyclin-dependent kinase 9 (CDK9) in TNBC. Using The Cancer Genome Atlas (TCGA) data we found high-CDK9 expression correlates with worse overall survival in TNBC patients. Pharmacologic inhibition of CDK9 with atuveciclib in high-CDK9 expressing TNBC cell lines reduced expression of CDK9 targets MYC and MCL1 and decreased cell proliferation and survival. Importantly, atuveciclib inhibited the growth of mammospheres and reduced the percentage of CD24low/CD44high cells, indicating disruption of breast CSLCs (BCSLCs). Furthermore, atuveciclib impaired 3D invasion of tumorspheres suggesting inhibition of both invasion and metastatic potential. Finally, atuveciclib enhanced the antineoplastic effects of Cisplatin and promoted inhibitory effects on BCSLCs grown as mammospheres. Together, these findings suggest CDK9 as a potential therapeutic target in aggressive forms of CDK9-high TNBC.
Collapse
|
8
|
Jung J, Jang K, Ju JM, Lee E, Lee JW, Kim HJ, Kim J, Lee SB, Ko BS, Son BH, Lee HJ, Gong G, Ahn SY, Choi JK, Singh SR, Chang S. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model. Cancer Lett 2018; 428:127-138. [DOI: 10.1016/j.canlet.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
|
9
|
Vidal G, Bursac Z, Miranda-Carboni G, White-Means S, Starlard-Davenport A. Racial disparities in survival outcomes by breast tumor subtype among African American women in Memphis, Tennessee. Cancer Med 2017; 6:1776-1786. [PMID: 28612435 PMCID: PMC5504313 DOI: 10.1002/cam4.1117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/13/2017] [Accepted: 05/07/2017] [Indexed: 01/09/2023] Open
Abstract
Racial disparities in survival among African American (AA) women in the United States have been well documented. Breast cancer mortality rates among AA women is higher in Memphis, Tennessee as compared to 49 of the largest US cities. In this study, we investigated the extent to which racial/ethnic disparities in survival outcomes among Memphis women are attributed to differences in breast tumor subtype and treatment outcomes. A total of 3527 patients diagnosed with stage I-IV breast cancer between January 2002 and April 2015 at Methodist Health hospitals and West Cancer Center in Memphis, TN were included in the analysis. Kaplan-Meier survival curves were generated and Cox proportional hazards regression were used to compare survival outcomes among 1342 (38.0%) AA and 2185 (62.0%) non-Hispanic White breast cancer patients by race and breast tumor subtype. Over a mean follow-up time of 29.9 months, AA women displayed increased mortality risk [adjusted hazard ratio (HR), 1.65; 95% confidence interval (CI), 1.35-2.03] and were more likely to be diagnosed at advanced stages of disease. AA women with triple-negative breast cancer (TNBC) had the highest death rate at 26.7% compared to non-Hispanic White women at 16.5%. AA women with TNBC and luminal B/HER2- breast tumors had the highest risk of mortality. Regardless of race, patients who did not have surgery had over five times higher risk of dying compared to those who had surgery. These findings provide additional evidence of the breast cancer disparity gap between AA and non-Hispanic White women and highlight the need for targeted interventions and policies to eliminate breast cancer disparities in AA populations, particularly in Memphis, TN.
Collapse
Affiliation(s)
- Gregory Vidal
- Division of Hematology/Oncology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, 38133.,The University of Tennessee West Cancer Center, Germantown, Tennessee
| | - Zoran Bursac
- Division of Biostatistics and Center for Population Sciences, Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gustavo Miranda-Carboni
- Division of Hematology/Oncology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, 38133
| | - Shelley White-Means
- Department of Clinical Pharmacy, Consortium on Health Education, Economic Empowerment and Research (CHEER), University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, 38133
| |
Collapse
|