1
|
Salut N, Gamallat Y, Seyedi S, Felipe Lima J, Ghosh S, Bismar TA. Unraveling the Prognostic Significance of BRCA1-Associated Protein 1 (BAP1) Expression in Advanced and Castrate-Resistant Prostate Cancer. BIOLOGY 2025; 14:315. [PMID: 40136571 PMCID: PMC11940205 DOI: 10.3390/biology14030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Prostate cancer (PCa) is ranked as one of the top cancers affecting men in Western societies. BRCA1-associated protein 1 (BAP1) expression significance has been observed in various cancers, including prostate cancer. The search for prognostic models allowing better risk stratification and prediction of disease progression in prostate cancer patients is still of major clinical need. Our data showed that nuclear BAP1 expression is the most associated with cancer clinical outcomes and other biomarkers. The data confirmed that decreased BAP1 nuclear expression is linked to aggressive tumors and poorer prognosis. We assessed BAP1 expression in 202 cases, including advanced and castrate-resistant PCa (CRPCa). Our data indicated low BAP1 nuclear expression in advanced and castrate-resistant disease (CRPCa). Furthermore, there was a significant difference between high and low BAP1 nuclear expression relative to the patient's clinical outcome. In the present cohort, decreased BAP1 intensity exhibited a significant association with unfavorable overall survival (OS) (HR 2.31, CI: 1.38-3.86, p = 0.001) and cause-specific survival (CSS) (HR 2.44, CI: 1.24-4.78, p = 0.01). Additionally, this association was more pronounced when low BAP1 expression (high risk) was combined with other common PCa genomic alterations such as phosphatase and tensin homolog (PTEN) loss or ETS-related gene (ERG)-positive cases, resulting in higher unfavorable OS and CSS. Conversely, high BAP1 nuclear expression (moderate and high intensity) combined with no ERG expression or PTEN (moderate or high expression), p53 (wild type), and androgen receptor (AR) (low/moderate intensity) showed better association with higher survival rates. All these data support the notion that BAP1 functions as a tumor suppressor. Integrating BAP1 status with other genomic alterations offers a more comprehensive understanding of disease aggressiveness.
Collapse
Affiliation(s)
- Norel Salut
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (N.S.); (Y.G.); (S.S.); (J.F.L.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (N.S.); (Y.G.); (S.S.); (J.F.L.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sima Seyedi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (N.S.); (Y.G.); (S.S.); (J.F.L.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Joema Felipe Lima
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (N.S.); (Y.G.); (S.S.); (J.F.L.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sunita Ghosh
- Department of Medical Oncology, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada;
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (N.S.); (Y.G.); (S.S.); (J.F.L.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Tom Baker Cancer Center, Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Prostate Cancer Centre, Calgary, AB T2V 1P9, Canada
- Department of Pathology, Alberta Precision Labs, Rockyview General Hospital, Calgary, AB T2V 1P9, Canada
| |
Collapse
|
2
|
Gamallat Y, Alwazan H, Turko R, Dang V, Seyedi S, Ghosh S, Bismar TA. Elevated LAMTOR4 Expression Is Associated with Lethal Prostate Cancer and Its Knockdown Decreases Cell Proliferation, Invasion, and Migration In Vitro. Int J Mol Sci 2024; 25:8100. [PMID: 39125671 PMCID: PMC11312415 DOI: 10.3390/ijms25158100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Late endosomal/lysosomal adaptor, MAPK and mTOR, or LAMTOR, is a scaffold protein complex that senses nutrients and integrates growth factor signaling. The role of LAMTOR4 in tumorigenesis is still unknown. However, there is a considerable possibility that LAMTOR4 is directly involved in tumor cell proliferation and metastasis. In the current study, we investigated the protein expression of LAMTOR4 in a cohort of 314 men who were undergoing transurethral resection of prostate (TURP) consisting of incidental, advanced and castration-resistant cases. We also correlated the data with ERG and PTEN genomic status and clinicopathological features including Gleason score and patients' outcome. Additionally, we performed in vitro experiments utilizing knockdown of LAMTOR4 in prostate cell lines, and we performed mRNA expression assessment using TCGA prostate adenocarcinoma (TCGA-PRAD) to explore the potential differentially expressed genes and pathways associated with LAMTOR4 overexpression in PCa patients. Our data indicate that high LAMTOR4 protein expression was significantly associated with poor overall survival (OS) (HR: 1.44, CI: 1.01-2.05, p = 0.047) and unfavorable cause-specific survival (CSS) (HR: 1.71, CI: 1.06-2.77, p = 0.028). Additionally, when high LAMTOR4 expression was combined with PTEN-negative cases (score 0), we found significantly poorer OS (HR: 2.22, CI: 1.37-3.59, p = 0.001) and CSS (HR: 3.46, CI: 1.86-6.46, p < 0.0001). Furthermore, ERG-positive cases with high LAMTOR4 exhibited lower OS (HR: 1.98, CI: 1.18-3.31, p = 0.01) and CSS (HR: 2.54, CI: 1.32-4.87, p = 0.005). In vitro assessment showed that knockdown of LAMTOR4 decreases PCa cell proliferation, migration, and invasion. Our data further showed that knockdown of LAMTOR4 in the LNCaP cell line significantly dysregulated the β catenin/mTOR pathway and tumorigenesis associated pathways. Inhibiting components of the mTOR pathway, including LAMTOR4, might offer a strategy to inhibit tumor progression and metastasis in prostate cancer.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Huseen Alwazan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Rasoul Turko
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Vincent Dang
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Sima Seyedi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sunita Ghosh
- Departments of Mathematical and Statistical Sciences and Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Tom Baker Cancer Center, Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Prostate Cancer Centre, Rockyview General Hospital, Calgary, AB T2V 1P9, Canada
- Alberta Precision Labs, Rockyview General Hospital, Calgary, AB T2V 1P9, Canada
| |
Collapse
|
3
|
Felkai L, Krencz I, Kiss DJ, Nagy N, Petővári G, Dankó T, Micsík T, Khoor A, Tornóczky T, Sápi Z, Sebestyén A, Csóka M. Characterization of mTOR Activity and Metabolic Profile in Pediatric Rhabdomyosarcoma. Cancers (Basel) 2020; 12:1947. [PMID: 32709151 PMCID: PMC7409076 DOI: 10.3390/cancers12071947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
mTOR activation has been observed in rhabdomyosarcoma (RMS); however, mTOR complex (mTORC) 1 inhibition has had limited success thus far. mTOR activation alters the metabolic pathways, which is linked to survival and metastasis. These pathways have not been thoroughly analyzed in RMSs. We performed immunohistochemistry on 65 samples to analyze the expression of mTOR complexes (pmTOR, pS6, Rictor), and several metabolic enzymes (phosphofructokinase, lactate dehydrogenase-A, β-F1-ATPase, glucose-6-phosphate dehydrogenase, glutaminase). RICTOR amplification, as a potential mechanism of Rictor overexpression, was analyzed by FISH and digital droplet PCR. In total, 64% of the studied primary samples showed mTOR activity with an mTORC2 dominance (82%). Chemotherapy did not cause any relevant change in mTOR activity. Elevated mTOR activity was associated with a worse prognosis in relapsed cases. RICTOR amplification was not confirmed in any of the cases. Our findings suggest the importance of the Warburg effect and the pentose-phosphate pathway beside a glutamine demand in RMS cells. The expression pattern of the studied mTOR markers can explain the inefficacy of mTORC1 inhibitor therapy. Therefore, we suggest performing a detailed investigation of the mTOR profile before administering mTORC1 inhibitor therapy. Furthermore, our findings highlight that targeting the metabolic plasticity could be an alternative therapeutic approach.
Collapse
Affiliation(s)
- Luca Felkai
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary; (L.F.); (D.J.K.)
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - Dorottya Judit Kiss
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary; (L.F.); (D.J.K.)
| | - Noémi Nagy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - Tamás Micsík
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - András Khoor
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Tamás Tornóczky
- Department of Pathology, Medical School and Clinical Center, University of Pécs, 7624 Pécs, Hungary;
| | - Zoltán Sápi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (N.N.); (G.P.); (T.D.); (T.M.); (Z.S.)
| | - Monika Csóka
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary; (L.F.); (D.J.K.)
| |
Collapse
|