1
|
Elpek GO. Tata-box-binding protein-associated factor 15 as a new potential marker in gastrointestinal tumors. World J Gastroenterol 2024; 30:3367-3372. [PMID: 39091718 PMCID: PMC11290397 DOI: 10.3748/wjg.v30.i28.3367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
In this editorial, the roles of tata-box-binding protein-associated factor 15 (TAF15) in oncogenesis, tumor behavior, and as a therapeutic target in cancers in the context of gastrointestinal (GI) tumors are discussed concerning the publication by Guo et al. TAF15 is a member of the FET protein family with a comprehensive range of cellular processes. Besides, evidence has shown that TAF15 is involved in many diseases, including cancers. TAF15 contributes to carcinogenesis and tumor behavior in many tumors. Besides, its relationship with the mitogen-activated protein kinases (MAPK) signaling pathway makes TAF15 a new target for therapy. Although, the fact that there is few studies investigating the expression of TAF15 constitutes a potential limitation in GI system, the association of TAF15 expression with aggressive tumor behavior and, similar to other organ tumors, the influence of TAF15 on the MAPK signaling pathway emphasize that this protein could serve as a new molecular biomarker to predict tumor behavior and target therapeutic intervention in GI cancers. In conclusion, more studies should be performed to better understand the prognostic and therapeutic role of TAF15 in GI tumors, especially in tumors resistant to therapy.
Collapse
Affiliation(s)
- Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Türkiye
| |
Collapse
|
2
|
Guo Q, Zhang G, Zhou W, Lu Y, Chen X, Deng Z, Li J, Bi H, Wu M, Xie M, Yan Y, Zhang J. m 6A modification of lncRNA PHKA1-AS1 enhances Actinin Alpha 4 stability and promotes non-small cell lung cancer metastasis. MedComm (Beijing) 2024; 5:e547. [PMID: 38764726 PMCID: PMC11099756 DOI: 10.1002/mco2.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/21/2024] Open
Abstract
Cancer is a disease with molecular heterogeneity that is closely related to gene mutations and epigenetic changes. The principal histological subtype of lung cancer is non-small cell lung cancer (NSCLC). Long noncoding RNA (lncRNA) is a kind of RNA that is without protein coding function, playing a critical role in the progression of cancer. In this research, the regulatory mechanisms of lncRNA phosphorylase kinase regulatory subunit alpha 1 antisense RNA 1 (PHKA1-AS1) in the progression of NSCLC were explored. The increased level of N6-methyladenosine (m6A) modification in NSCLC caused the high expression of PHKA1-AS1. Subsequently, high-expressed PHKA1-AS1 significantly facilitated the proliferation and metastasis of NSCLC cells, and these effects could be reversed upon the inhibition of PHKA1-AS1 expression, both in vivo and in vitro. Additionally, the target protein of PHKA1-AS1 was actinin alpha 4 (ACTN4), which is known as an oncogene. Herein, PHKA1-AS1 could enhance the protein stability of ACTN4 by inhibiting its ubiquitination degradation process, thus exerting the function of ACTN4 in promoting the progress of NSCLC. In conclusion, this research provided a theoretical basis for further exploring the potential mechanism of NSCLC metastasis and searching novel biomarkers related to the pathogenesis and progression of NSCLC.
Collapse
Affiliation(s)
- Qiao‐Ru Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Guo‐Bin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Wen‐Min Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Xin‐Zhu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Zhuo‐Fen Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Jin‐Shuo Li
- School of MedicineShanxi Datong UniversityDatongP.R. China
| | - Hong Bi
- Department of PathologyShanxi Provincial People's HospitalTaiyuanP.R. China
| | - Ming‐Sheng Wu
- Department of Thoracic SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiP.R. China
| | - Ming‐Ran Xie
- Department of Thoracic SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiP.R. China
| | - Yan‐Yan Yan
- School of MedicineShanxi Datong UniversityDatongP.R. China
| | - Jian‐Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
- The Affiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuanP.R. China
| |
Collapse
|
3
|
Chen L, Sun K, Qin W, Huang B, Wu C, Chen J, Lai Q, Wang X, Zhou R, Li A, Liu S, Zhang Y. LIMK1 m 6A-RNA methylation recognized by YTHDC2 induces 5-FU chemoresistance in colorectal cancer via endoplasmic reticulum stress and stress granule formation. Cancer Lett 2023; 576:216420. [PMID: 37778684 DOI: 10.1016/j.canlet.2023.216420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
LIM kinase 1 (LIMK1) is a member of the LIMK family that has been considered to be involved in chemoresistance in various tumors, and N6-methyladenosine (m6A) is the most abundant nucleotide modification on mRNA. However, whether elevated expression of LIMK1 leads to chemoresistance due to m6A modification remains to be further studied. The findings of our study indicate that high LIMK1 expression in colorectal cancer (CRC) cells promotes cell proliferation and increases resistance to 5-fluorouracil (5-FU). Moreover, downregulation of YTH domain-containing 2 (YTHDC2), an m6A "reader", in CRC cells resulted in decreased recognition and binding to the m6A site "GGACA" in LIMK1 mRNA, thereby increasing LIMK1 mRNA stability and expression. Furthermore, the overexpression of LIMK1 facilitated eIF2α phosphorylation, which induced endoplasmic reticulum (ER) stress and promoted stress granule (SG) formation, ultimately leading to 5-FU resistance. This study evaluated the specificity of the YTHDC2/LIMK1/eIF2α signalling axis and the efficacy of related drugs in modulating 5-FU sensitivity in CRC.
Collapse
Affiliation(s)
- Lu Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangyue Sun
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjie Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changjie Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junsheng Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Braga EA, Fridman MV, Burdennyy AM, Loginov VI, Dmitriev AA, Pronina IV, Morozov SG. Various LncRNA Mechanisms in Gene Regulation Involving miRNAs or RNA-Binding Proteins in Non-Small-Cell Lung Cancer: Main Signaling Pathways and Networks. Int J Mol Sci 2023; 24:13617. [PMID: 37686426 PMCID: PMC10487663 DOI: 10.3390/ijms241713617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial players in the pathogenesis of non-small-cell lung cancer (NSCLC). A competing binding of lncRNAs and mRNAs with microRNAs (miRNAs) is one of the most common mechanisms of gene regulation by lncRNAs in NSCLC, which has been extensively researched in the last two decades. However, alternative mechanisms that do not depend on miRNAs have also been reported. Among them, the most intriguing mechanism is mediated by RNA-binding proteins (RBPs) such as IGF2BP1/2/3, YTHDF1, HuR, and FBL, which increase the stability of target mRNAs. IGF2BP2 and YTHDF1 may also be involved in m6A modification of lncRNAs or target mRNAs. Some lncRNAs, such as DLGAP1-AS2, MALAT1, MNX1-AS1, and SNHG12, are involved in several mechanisms depending on the target: lncRNA/miRNA/mRNA interactome and through RBP. The target protein sets selected here were then analyzed using the DAVID database to identify the pathways overrepresented by KEGG, Wikipathways, and the Reactome pathway. Using the STRING website, we assessed interactions between the target proteins and built networks. Our analysis revealed that the JAK-STAT and Hippo signaling pathways, cytokine pathways, the VEGFA-VEGFR2 pathway, mechanisms of cell cycle regulation, and neovascularization are the most relevant to the effect of lncRNA on NSCLC.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| |
Collapse
|
5
|
Huang J, Xu Z, Zhou C, Cheng L, Zeng H, Shen Y. 5-Methylcytosine-related lncRNAs: predicting prognosis and identifying hot and cold tumor subtypes in head and neck squamous cell carcinoma. World J Surg Oncol 2023; 21:180. [PMID: 37312123 DOI: 10.1186/s12957-023-03067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/04/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND 5-Methylcytosine (m5C) methylation is recognized as an mRNA modification that participates in biological progression by regulating related lncRNAs. In this research, we explored the relationship between m5C-related lncRNAs (mrlncRNAs) and head and neck squamous cell carcinoma (HNSCC) to establish a predictive model. METHODS RNA sequencing and related information were obtained from the TCGA database, and patients were divided into two sets to establish and verify the risk model while identifying prognostic mrlncRNAs. Areas under the ROC curves were assessed to evaluate the predictive effectiveness, and a predictive nomogram was constructed for further prediction. Subsequently, the tumor mutation burden (TMB), stemness, functional enrichment analysis, tumor microenvironment, and immunotherapeutic and chemotherapeutic responses were also assessed based on this novel risk model. Moreover, patients were regrouped into subtypes according to the expression of model mrlncRNAs. RESULTS Assessed by the predictive risk model, patients were distinguished into the low-MLRS and high-MLRS groups, showing satisfactory predictive effects with AUCs of 0.673, 0.712, and 0.681 for the ROCs, respectively. Patients in the low-MLRS groups exhibited better survival status, lower mutated frequency, and lower stemness but were more sensitive to immunotherapeutic response, whereas the high-MLRS group appeared to have higher sensitivity to chemotherapy. Subsequently, patients were regrouped into two clusters: cluster 1 displayed immunosuppressive status, but cluster 2 behaved as a hot tumor with a better immunotherapeutic response. CONCLUSIONS Referring to the above results, we established a m5C-related lncRNA model to evaluate the prognosis, TME, TMB, and clinical treatments for HNSCC patients. This novel assessment system is able to precisely predict the patients' prognosis and identify hot and cold tumor subtypes clearly for HNSCC patients, providing ideas for clinical treatment.
Collapse
Affiliation(s)
- Juntao Huang
- Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Ziqian Xu
- Department of Dermatology, Ningbo First Hospital, Zhejiang University, Zhejiang, China
| | - Chongchang Zhou
- Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lixin Cheng
- Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hong Zeng
- Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Shen
- Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Otolaryngology, Head and Neck Surgery, Ningbo No.2 Hospital, Ningbo, China.
| |
Collapse
|
6
|
Knockdown of lncRNA FOXD1-AS1 promotes the radiosensitivity of lung squamous cell carcinoma cells by regulating the miR-4801/PUM1 axis. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
7
|
Guo CM, Tang L, Li X, Huang LY. TATA-box-binding protein-associated factor 15 is a novel biomarker that promotes cell proliferation and migration in gastrointestinal stromal tumor. World J Gastroenterol 2023; 29:2932-2949. [PMID: 37274797 PMCID: PMC10237090 DOI: 10.3748/wjg.v29.i19.2932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Gastrointestinal stromal tumor (GIST) is a common neoplasm with high rates of recurrence and metastasis, and its therapeutic efficacy is still not ideal. There is an unmet need to find new molecular therapeutic targets for GIST. TATA-box-binding protein-associated factor 15 (TAF15) contributes to the progress of various tumors, while the role and molecular mechanism of TAF15 in GIST progression are still unknown.
AIM To explore new molecular therapeutic targets for GIST and understand the biological role and underlying mechanisms of TAF15 in GIST progression.
METHODS Proteomic analysis was performed to explore the differentially expressed proteins in GIST. Western blotting and immunohistochemical analysis were used to verify the expression level of TAF15 in GIST tissues and cell lines. Cell counting kit-8, colony formation, wound-healing and transwell assay were executed to detect the ability of TAF15 on cell proliferation, migration and invasion. A xenograft mouse model was applied to explore the role of TAF15 in the progression of GIST. Western blotting was used to detect the phosphorylation level and total level of RAF1, MEK and ERK1/2.
RESULTS A total of 1669 proteins were identified as differentially expressed proteins with 762 upregulated and 907 downregulated in GIST. TAF15 was selected for the further study because of its important role in cell proliferation and migration. TAF15 was significantly over expressed in GIST tissues and cell lines. Overexpression of TAF15 was associated with larger tumor size and higher risk stage of GIST. TAF15 knockdown significantly inhibited the cell proliferation and migration of GIST in vitro and suppressed tumor growth in vivo. Moreover, the inhibition of TAF15 expression significantly decreased the phosphorylation level of RAF1, MEK and ERK1/2 in GIST cells and xenograft tissues, while the total RAF1, MEK and ERK1/2 had no significant change.
CONCLUSION TAF15 is over expressed in GIST tissues and cell lines. Overexpression of TAF15 was associated with a poor prognosis of GIST patients. TAF15 promotes cell proliferation and migration in GIST via the activation of the RAF1/MEK/ERK signaling pathway. Thus, TAF15 is expected to be a novel latent molecular biomarker or therapeutic target of GIST.
Collapse
Affiliation(s)
- Cheng-Ming Guo
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Li Tang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Xu Li
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Liu-Ye Huang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| |
Collapse
|
8
|
Tang L, Guo C, Li X, Zhang B, Huang L. TAF15 promotes cell proliferation, migration and invasion of gastric cancer via activation of the RAF1/MEK/ERK signalling pathway. Sci Rep 2023; 13:5846. [PMID: 37037864 PMCID: PMC10086039 DOI: 10.1038/s41598-023-31959-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
TATA-box-binding protein-associated Factor 15 (TAF15), a member of the FUS/EWS/TAF15 (FET) family, contributes to the progression of various tumours. However, the role and molecular mechanism of TAF15 in gastric cancer (GC) progression are still unknown. In this study, we found that TAF15 was significantly upregulated in GC tumour tissues and cell lines. Overexpression of TAF15 was associated with a larger tumour size, high pathologic stage and high T stage of GC. TAF15 knockdown suppressed the proliferation, migration and invasion of GC cells in vitro and inhibited the tumour growth in vivo. Additionally, TAF15 knockdown led to the significant reductions in the phosphorylation levels of RAF1, MEK and ERK1/2, while total RAF1, MEK and ERK1/2 exhibited no significant change in GC cell lines. In summary, TAF15 is overexpressed in GC tumour tissues and cell lines, and promotes cell proliferation, migration and invasion in GC via the RAF1/MEK/ERK signaling pathway, which suggests that TAF15 might be a potential molecular diagnostic marker or therapeutic target for GC.
Collapse
Affiliation(s)
- Li Tang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Chengming Guo
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Xu Li
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Bo Zhang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Liuye Huang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Xu Z, Zhang M, Guo Z, Chen L, Yang X, Li X, Liang Q, Tang Y, Liu J. Stemness-related lncRNAs signature as a biologic prognostic model for head and neck squamous cell carcinoma. Apoptosis 2023; 28:860-880. [PMID: 36997733 DOI: 10.1007/s10495-023-01832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Cancer stem cells (CSCs) and long non-coding RNAs (lncRNAs) are particularly important for tumor cell growth and migration, and recurrence and drug resistance, including head and neck squamous cell carcinoma (HNSCC). The purpose of this study was to explore stemness-related lncRNAs (SRlncRNAs) that could be used for prognosis of patients with HNSCC. HNSCC RNA sequencing data and matched clinical data were obtained from TCGA database, and stem cell characteristic genes related to HNSCC mRNAsi were obtained from the online database by WGCNA analysis, respectively. Further, SRlncRNAs were obtained. Then, the prognostic model was constructed to forecast patient survival through univariate Cox regression and LASSO-Cox method based on SRlncRNAs. Kaplan-Meier, ROC and AUC were used to evaluate the predictive ability of the model. Moreover, we probed the underlying biological functions, signalling pathways and immune status hidden within differences in prognosis of patients. We explored whether the model could guide personalized treatments included immunotherapy and chemotherapy for HNSCC patients. At last, RT-qPCR was performed to analyze the expressions levels of SRlncRNAs in HNSCC cell lines. A SRlncRNAs signature was identified based on 5 SRlncRNAs (AC004943.2, AL022328.1, MIR9-3HG, AC015878.1 and FOXD2-AS1) in HNSCC. Also, risk scores were correlated with the abundance of tumor-infiltrating immune cells, whereas HNSCC-nominated chemotherapy drugs were considerably different from one another. The final finding was that these SRlncRNAs were abnormally expressed in HNSCCCS according to the results of RT-qPCR. These 5 SRlncRNAs signature, as a potential prognostic biomarker, can be utilized for personalized medicine in HNSCC patients.
Collapse
Affiliation(s)
- Zejun Xu
- School of Life Sciences, Hainan University, Hainan, 570100, People's Republic of China
- Institute of Biological Anthropology of Jinzhou Medical University, Liaoning, 110000, People's Republic of China
| | - Min Zhang
- Xiangya Hospital, Central South University, Hunan, 410000, People's Republic of China
| | - Zhiqiang Guo
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Lin Chen
- Community Health Service Center of Zhongshan Street, Songjiang District, Shanghai, 201700, People's Republic of China
| | - Xiaolei Yang
- Fourth People's Hospital of Jinan, Jinan, 250031, People's Republic of China
| | - Xiaoyu Li
- School of Life Sciences, Hainan University, Hainan, 570100, People's Republic of China
| | - Qian Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuqing Tang
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Jian Liu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China.
| |
Collapse
|
10
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|