1
|
Hedayati N, Safari MH, Milasi YE, Kahkesh S, Farahani N, Khoshnazar SM, Dorostgou Z, Alaei E, Alimohammadi M, Rahimzadeh P, Taheriazam A, Hashemi M. Modulation of the PI3K/Akt signaling pathway by resveratrol in cancer: molecular mechanisms and therapeutic opportunity. Discov Oncol 2025; 16:669. [PMID: 40323335 PMCID: PMC12052642 DOI: 10.1007/s12672-025-02471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a critical intracellular signaling pathway that is pivotal in various cellular functions. It is in senescence, survival, and growth under normal physiological and pathological conditions, including neoplasms. Additionally, this pathway has been recognized as essential for the regulation of the cell cycle. Several previous studies have indicated that the PI3K/Akt signaling pathway can be influenced by various natural products, with resveratrol (3,4',5-trihydroxy-trans-stilbene) being a particularly important phytoalexin polyphenol in this context. This review explores the impact of the PI3K/Akt signaling pathway on the initiation and advancement of various cancerous conditions and the potential of resveratrol to target this signaling mechanism. The review begins by summarizing the anti-tumor capabilities of resveratrol and then emphasizes the significant role of the PI3K/Akt signaling pathway in the progression of multiple malignancies. Finally, we discuss the therapeutic effects of resveratrol on human neoplasms, from brain cancers to gastrointestinal malignancies, through regulation of this signaling cascade.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergent Sciences Research Center, TeMs. C., Islamic Azad University, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergent Sciences Research Center, TeMs. C., Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergent Sciences Research Center, TeMs. C., Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Owida HA, Saleh RO, Mohammad SI, Vasudevan A, Roopashree R, Kashyap A, Nanda A, Ray S, Hussein A, Yasin HA. Deciphering the role of circular RNAs in cancer progression under hypoxic conditions. Med Oncol 2025; 42:191. [PMID: 40314834 DOI: 10.1007/s12032-025-02727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/14/2025] [Indexed: 05/03/2025]
Abstract
Hypoxia, characterized by reduced oxygen levels, plays a pivotal role in cancer progression, profoundly influencing tumor behavior and therapeutic responses. A hallmark of solid tumors, hypoxia drives significant metabolic adaptations in cancer cells, primarily mediated by hypoxia-inducible factor-1α (HIF-1α), a key transcription factor activated in low-oxygen conditions. This hypoxic environment promotes epithelial-mesenchymal transition (EMT), enhancing cancer cell migration, metastasis, and the development of cancer stem cell-like properties, which contribute to therapy resistance. Moreover, hypoxia modulates the expression of circular RNAs (circRNAs), leading to their accumulation in the tumor microenvironment. These hypoxia-responsive circRNAs regulate gene expression and cellular processes critical for cancer progression, making them promising candidates for diagnostic and prognostic biomarkers in various cancers. This review delves into the intricate interplay between hypoxic circRNAs, microRNAs, and RNA-binding proteins, emphasizing their role as molecular sponges that modulate gene expression and signaling pathways involved in cell proliferation, apoptosis, and metastasis. It also explores the relationship between circRNAs and the tumor microenvironment, particularly how hypoxia influences their expression and functional dynamics. Additionally, the review highlights the potential of circRNAs as diagnostic and prognostic tools, as well as their therapeutic applications in innovative cancer treatments. By consolidating current knowledge, this review underscores the critical role of circRNAs in cancer biology and paves the way for future research aimed at harnessing their unique properties for clinical advancements. Specifically, this review examines the biogenesis, expression patterns, and mechanistic actions of hypoxic circRNAs, focusing on their ability to act as molecular sponges for microRNAs and their interactions with RNA-binding proteins. These interactions impact key signaling pathways related to tumor growth, metastasis, and drug resistance, offering new insights into the complex regulatory networks governed by circRNAs under hypoxic stress.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Department of Medical Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman, Jordan
| | - Raed Obaid Saleh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, University of Al Maarif, Al Anbar, 31001, Iraq.
| | - Suleiman Ibrahim Mohammad
- Research Follower, INTI International University, 71800, Negeri Sembilan, Malaysia.
- Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Zarqa, Jordan.
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ahmed Hussein
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|