1
|
Darsha Jayamini WK, Mirza F, Asif Naeem M, Chan AHY. Investigating Machine Learning Techniques for Predicting Risk of Asthma Exacerbations: A Systematic Review. J Med Syst 2024; 48:49. [PMID: 38739297 PMCID: PMC11090925 DOI: 10.1007/s10916-024-02061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024]
Abstract
Asthma, a common chronic respiratory disease among children and adults, affects more than 200 million people worldwide and causes about 450,000 deaths each year. Machine learning is increasingly applied in healthcare to assist health practitioners in decision-making. In asthma management, machine learning excels in performing well-defined tasks, such as diagnosis, prediction, medication, and management. However, there remain uncertainties about how machine learning can be applied to predict asthma exacerbation. This study aimed to systematically review recent applications of machine learning techniques in predicting the risk of asthma attacks to assist asthma control and management. A total of 860 studies were initially identified from five databases. After the screening and full-text review, 20 studies were selected for inclusion in this review. The review considered recent studies published from January 2010 to February 2023. The 20 studies used machine learning techniques to support future asthma risk prediction by using various data sources such as clinical, medical, biological, and socio-demographic data sources, as well as environmental and meteorological data. While some studies considered prediction as a category, other studies predicted the probability of exacerbation. Only a group of studies applied prediction windows. The paper proposes a conceptual model to summarise how machine learning and available data sources can be leveraged to produce effective models for the early detection of asthma attacks. The review also generated a list of data sources that other researchers may use in similar work. Furthermore, we present opportunities for further research and the limitations of the preceding studies.
Collapse
Affiliation(s)
- Widana Kankanamge Darsha Jayamini
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, 1010, New Zealand.
- Department of Software Engineering, Faculty of Computing and Technology, University of Kelaniya, Kelaniya, 11300, Sri Lanka.
| | - Farhaan Mirza
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, 1010, New Zealand
| | - M Asif Naeem
- Department of Data Science & Artificial Intelligence, National University of Computer and Emerging Sciences (NUCES), Islamabad, 44000, Pakistan
| | - Amy Hai Yan Chan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
2
|
Kamga A, Manca E, Caimmi D, Eigenmann P, Akenroye A. Editorial comment on: "Developing a prediction model of children's asthma risk using population-based family history health records". Pediatr Allergy Immunol 2023; 34:e14063. [PMID: 38146114 DOI: 10.1111/pai.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Affiliation(s)
- Audrey Kamga
- Department of Immunology, "Hypersensibilité et Auto-immunité" Unit, UMR 996 INSERM, Hôpital Bichat- Claude Bernard, University of Paris-Saclay, Paris, France
| | - Enrica Manca
- Struttura Complessa di Pediatria Universitaria, Policlinico Riuniti di Foggia, Foggia, Italy
- IDESP, UA11, University of Montpellier, INSERM, Montpellier, France
| | - Davide Caimmi
- IDESP, UA11, University of Montpellier, INSERM, Montpellier, France
- Allergy Unit, University Hospital of Montpellier, Montpellier, France
| | - Philippe Eigenmann
- Department of Pediatrics, Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - Ayobami Akenroye
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
van Breugel M, Fehrmann RSN, Bügel M, Rezwan FI, Holloway JW, Nawijn MC, Fontanella S, Custovic A, Koppelman GH. Current state and prospects of artificial intelligence in allergy. Allergy 2023; 78:2623-2643. [PMID: 37584170 DOI: 10.1111/all.15849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
The field of medicine is witnessing an exponential growth of interest in artificial intelligence (AI), which enables new research questions and the analysis of larger and new types of data. Nevertheless, applications that go beyond proof of concepts and deliver clinical value remain rare, especially in the field of allergy. This narrative review provides a fundamental understanding of the core concepts of AI and critically discusses its limitations and open challenges, such as data availability and bias, along with potential directions to surmount them. We provide a conceptual framework to structure AI applications within this field and discuss forefront case examples. Most of these applications of AI and machine learning in allergy concern supervised learning and unsupervised clustering, with a strong emphasis on diagnosis and subtyping. A perspective is shared on guidelines for good AI practice to guide readers in applying it effectively and safely, along with prospects of field advancement and initiatives to increase clinical impact. We anticipate that AI can further deepen our knowledge of disease mechanisms and contribute to precision medicine in allergy.
Collapse
Affiliation(s)
- Merlijn van Breugel
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- MIcompany, Amsterdam, the Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Computer Science, Aberystwyth University, Aberystwyth, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London, London, UK
- National Institute for Health and Care Research Imperial Biomedical Research Centre (BRC), London, UK
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
- National Institute for Health and Care Research Imperial Biomedical Research Centre (BRC), London, UK
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Huang YH, Xie C, Chou CY, Jin Y, Li W, Wang M, Lu Y, Liu Z. Subtyping intractable functional constipation in children using clinical and laboratory data in a classification model. Front Pediatr 2023; 11:1148753. [PMID: 37168808 PMCID: PMC10165123 DOI: 10.3389/fped.2023.1148753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Background Children with intractable functional constipation (IFC) who are refractory to traditional pharmacological intervention develop severe symptoms that can persist even in adulthood, resulting in a substantial deterioration in their quality of life. In order to better manage IFC patients, efficient subtyping of IFC into its three subtypes, normal transit constipation (NTC), outlet obstruction constipation (OOC), and slow transit constipation (STC), at early stages is crucial. With advancements in technology, machine learning can classify IFC early through the use of validated questionnaires and the different serum concentrations of gastrointestinal motility-related hormones. Method A hundred and one children with IFC and 50 controls were enrolled in this study. Three supervised machine-learning methods, support vector machine, random forest, and light gradient boosting machine (LGBM), were used to classify children with IFC into the three subtypes based on their symptom severity, self-efficacy, and quality of life which were quantified using certified questionnaires and their serum concentrations of the gastrointestinal hormones evaluated with enzyme-linked immunosorbent assay. The accuracy of machine learning subtyping was evaluated with respect to radiopaque markers. Results Of 101 IFC patients, 37 had NTC, 49 had OOC, and 15 had STC. The variables significant for IFC subtype classification, according to SelectKBest, were stool frequency, the satisfaction domain of the Patient Assessment of Constipation Quality of Life questionnaire (PAC-QOL), the emotional self-efficacy for Functional Constipation questionnaire (SEFCQ), motilin serum concentration, and vasoactive intestinal peptide serum concentration. Among the three models, the LGBM model demonstrated an accuracy of 83.8%, a precision of 84.5%, a recall of 83.6%, a f1-score of 83.4%, and an area under the receiver operating characteristic curve (AUROC) of 0.89 in discriminating IFC subtypes. Conclusion Using clinical characteristics measured by certified questionnaires and serum concentrations of the gastrointestinal hormones, machine learning can efficiently classify pediatric IFC into its three subtypes. Of the three models tested, the LGBM model is the most accurate model for the classification of IFC, with an accuracy of 83.8%, demonstrating that machine learning is an efficient tool for the management of IFC in children.
Collapse
Affiliation(s)
- Yi-Hsuan Huang
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
| | - Chenjia Xie
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Chih-Yi Chou
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu Jin
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
| | - Wei Li
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Quality Management, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wang
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Correspondence: Yan Lu Zhifeng Liu
| | - Zhifeng Liu
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
- Correspondence: Yan Lu Zhifeng Liu
| |
Collapse
|
5
|
Data harnessing to nurture the human mind for a tailored approach to the child. Pediatr Res 2023; 93:357-365. [PMID: 36180585 DOI: 10.1038/s41390-022-02320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022]
Abstract
Big data in pediatrics is an ocean of structured and unstructured data. Big data analysis helps to dive into the ocean of data to filter out information that can guide pediatricians in their decision making, precision diagnosis, and targeted therapy. In addition, big data and its analysis have helped in the surveillance, prevention, and performance of the health system. There has been a considerable amount of work in pediatrics that we have tried to highlight in this review and some of it has been already incorporated into the health system. Work in specialties of pediatrics is still forthcoming with the creation of a common data model and amalgamation of the huge "omics" database. The physicians entrusted with the care of children must be aware of the outcome so that they can play a role to ensure that big data algorithms have a clinically relevant effect in improving the health of their patients. They will apply the outcome of big data and its analysis in patient care through clinical algorithms or with the help of embedded clinical support alerts from the electronic medical records. IMPACT: Big data in pediatrics include structured, unstructured data, waveform data, biological, and social data. Big data analytics has unraveled significant information from these databases. This is changing how pediatricians will look at the body of available evidence and translate it into their clinical practice. Data harnessed so far is implemented in certain fields while in others it is in the process of development to become a clinical adjunct to the physician. Common databases are being prepared for future work. Diagnostic and prediction models when incorporated into the health system will guide the pediatrician to a targeted approach to diagnosis and therapy.
Collapse
|
6
|
Kothalawala DM, Kadalayil L, Curtin JA, Murray CS, Simpson A, Custovic A, Tapper WJ, Arshad SH, Rezwan FI, Holloway JW. Integration of Genomic Risk Scores to Improve the Prediction of Childhood Asthma Diagnosis. J Pers Med 2022; 12:75. [PMID: 35055391 PMCID: PMC8777841 DOI: 10.3390/jpm12010075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/31/2021] [Indexed: 01/24/2023] Open
Abstract
Genome-wide and epigenome-wide association studies have identified genetic variants and differentially methylated nucleotides associated with childhood asthma. Incorporation of such genomic data may improve performance of childhood asthma prediction models which use phenotypic and environmental data. Using genome-wide genotype and methylation data at birth from the Isle of Wight Birth Cohort (n = 1456), a polygenic risk score (PRS), and newborn (nMRS) and childhood (cMRS) methylation risk scores, were developed to predict childhood asthma diagnosis. Each risk score was integrated with two previously published childhood asthma prediction models (CAPE and CAPP) and were validated in the Manchester Asthma and Allergy Study. Individually, the genomic risk scores demonstrated modest-to-moderate discriminative performance (area under the receiver operating characteristic curve, AUC: PRS = 0.64, nMRS = 0.55, cMRS = 0.54), and their integration only marginally improved the performance of the CAPE (AUC: 0.75 vs. 0.71) and CAPP models (AUC: 0.84 vs. 0.82). The limited predictive performance of each genomic risk score individually and their inability to substantially improve upon the performance of the CAPE and CAPP models suggests that genetic and epigenetic predictors of the broad phenotype of asthma are unlikely to have clinical utility. Hence, further studies predicting specific asthma endotypes are warranted.
Collapse
Affiliation(s)
- Dilini M. Kothalawala
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.M.K.); (L.K.); (W.J.T.); (F.I.R.)
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK;
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.M.K.); (L.K.); (W.J.T.); (F.I.R.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - John A. Curtin
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Manchester University Hospital NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (J.A.C.); (C.S.M.); (A.S.)
| | - Clare S. Murray
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Manchester University Hospital NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (J.A.C.); (C.S.M.); (A.S.)
| | - Angela Simpson
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Manchester University Hospital NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (J.A.C.); (C.S.M.); (A.S.)
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College of Science, Technology, and Medicine, London SW3 6LY, UK;
| | - William J. Tapper
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.M.K.); (L.K.); (W.J.T.); (F.I.R.)
| | - S. Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK;
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- The David Hide Asthma and Allergy Research Centre, St. Mary’s Hospital, Isle of Wight PO30 5TG, UK
| | - Faisal I. Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.M.K.); (L.K.); (W.J.T.); (F.I.R.)
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, UK
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.M.K.); (L.K.); (W.J.T.); (F.I.R.)
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK;
| | | |
Collapse
|