1
|
Aşık M, İlhan R, Günver MG, Orhan Ö, Esmeray MT, Kalaba Ö, Arıkan MK. Multimodal Neuroimaging in the Prediction of Deep TMS Response in OCD. Clin EEG Neurosci 2025; 56:207-216. [PMID: 39563493 DOI: 10.1177/15500594241298977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Backgrounds: Brain morphological biomarkers could contribute to understanding the treatment response in patients with obsessive-compulsive disorder (OCD). Multimodal neuroimaging addresses this issue by providing more comprehensive information regarding neural processes and structures. Objectives. The present study aims to investigate whether patients responsive to deep Transcranial Magnetic Stimulation (TMS) differ from non-responsive individuals in terms of electrophysiology and brain morphology. Secondly, to test whether multimodal neuroimaging is superior to unimodal neuroimaging in predicting response to deep TMS. Methods. Thirty-two OCD patients who underwent thirty sessions of deep TMS treatment were included in the study. Based on a minimum 50% reduction in Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores after treatment, patients were grouped as responders (n = 25) and non-responders (n = 7). The baseline resting state qEEG and magnetic resonance imaging (MRI) records of patients were recorded. Independent sample t-test is used to compare the groups. Then, three logistic regression model were calculated for only QEEG markers, only MRI markers, and both QEEG/MRI markers. The predictive values of the three models were compared. Results. OCD patients who responded to deep TMS treatment had increased Alpha-2 power in the left temporal area and increased volume in the left temporal pole, entorhinal area, and parahippocampal gyrus compared to non-responders. The logistic regression model showed better prediction performance when both QEEG and MRI markers were included. Conclusions. This study addresses the gap in the literature regarding new functional and structural neuroimaging markers and highlights the superiority of multimodal neuroimaging to unimodal neuroimaging techniques in predicting treatment response.
Collapse
Affiliation(s)
- Murat Aşık
- Istanbul Medeniyet University, Faculty of Medicine, Department of Radiology, Istanbul, Turkey
| | - Reyhan İlhan
- Kemal Arıkan Psychiatry Clinic, Istanbul, Turkey
| | - Mehmet Güven Günver
- Faculty of Medicine, Department of Biostatistics, Istanbul University, Istanbul, Turkey
| | - Özden Orhan
- Kemal Arıkan Psychiatry Clinic, Istanbul, Turkey
| | | | - Öznur Kalaba
- Kemal Arıkan Psychiatry Clinic, Istanbul, Turkey
| | | |
Collapse
|
2
|
Guo H, Ali T, Li S. Neural circuits mediating chronic stress: Implications for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111280. [PMID: 39909171 DOI: 10.1016/j.pnpbp.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major depressive disorder (MDD), also known as depression, is a prevalent mental disorder that leads to severe disease burden worldwide. Over the past two decades, significant progress has been made in understanding the pathogenesis and developing novel treatments for MDD. Among the complicated etiologies of MDD, chronic stress is a major risk factor. Exploring the underlying brain circuit mechanisms of chronic stress regulation has been an area of active research for recent years. A growing body of preclinical and clinical research has revealed that abnormalities in the brain circuits are closely associated with failures in coping with stress in depressed individuals. Nevertheless, neural circuit mechanisms underlying chronic stress processing and the onset of depression remain a major puzzle. Here, we review recent literature focusing on circuit- and cell-type-specific dissection of depression-like behaviors in chronic stress-related animal models of MDD and outline the key questions.
Collapse
Affiliation(s)
- Hongling Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Tahir Ali
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Li S, Zhang J, Li J, Hu Y, Zhang M, Wang H. Optogenetics and chemogenetics: key tools for modulating neural circuits in rodent models of depression. Front Neural Circuits 2025; 19:1516839. [PMID: 40070557 PMCID: PMC11893610 DOI: 10.3389/fncir.2025.1516839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Optogenetics and chemogenetics are emerging neuromodulation techniques that have attracted significant attention in recent years. These techniques enable the precise control of specific neuronal types and neural circuits, allowing researchers to investigate the cellular mechanisms underlying depression. The advancement in these techniques has significantly contributed to the understanding of the neural circuits involved in depression; when combined with other emerging technologies, they provide novel therapeutic targets and diagnostic tools for the clinical treatment of depression. Additionally, these techniques have provided theoretical support for the development of novel antidepressants. This review primarily focuses on the application of optogenetics and chemogenetics in several brain regions closely associated with depressive-like behaviors in rodent models, such as the ventral tegmental area, nucleus accumbens, prefrontal cortex, hippocampus, dorsal raphe nucleus, and lateral habenula and discusses the potential and challenges of optogenetics and chemogenetics in future research. Furthermore, this review discusses the potential and challenges these techniques pose for future research and describes the current state of research on sonogenetics and odourgenetics developed based on optogenetics and chemogenetics. Specifically, this study aimed to provide reliable insights and directions for future research on the role of optogenetics and chemogenetics in the neural circuits of depressive rodent models.
Collapse
Affiliation(s)
- Shaowei Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianying Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiehui Li
- Shengli Oilfield Central Hospital, Dongying Rehabilitation Hospital, Dongying, China
| | - Yajie Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingkuan Zhang
- College of Medical and Healthcare, Linyi Vocational College, Linyi, China
| | - Haijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Yulug B, Ayyildiz S, Sayman D, Karaca R, Ipek L, Cankaya S, Salar AB, Ayyildiz B, Mikuta C, Yagci N, Oktem EO, Ozsimsek A, Velioglu HA, Hanoglu L. The functional role of the pulvinar in discriminating between objective and subjective cognitive impairment in major depressive disorder. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12450. [PMID: 38356480 PMCID: PMC10865482 DOI: 10.1002/trc2.12450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Emotionally driven cognitive complaints represent a major diagnostic challenge for clinicians and indicate the importance of objective confirmation of the accuracy of depressive patients' descriptions of their cognitive symptoms. METHODS We compared cognitive status and structural and functional brain connectivity changes in the pulvinar and hippocampus between patients with total depression and healthy controls. The depressive group was also classified as "amnestic" or "nonamnestic," based on the members' subjective reports concerning their forgetfulness. We then sought to determine whether these patients would differ in terms of objective neuroimaging and cognitive findings. RESULTS The right pulvinar exhibited altered connectivity in individuals with depression with objective cognitive impairment, a finding which was not apparent in depressive patients with subjective cognitive impairment. DISCUSSION The pulvinar may play a role in depression-related cognitive impairments. Connectivity network changes may differ between objective and subjective cognitive impairment in depression and may play a role in the increased risk of dementia in patients with depression.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
- Department of Neurology and NeuroscienceIstanbul Medipol UniversityIstanbulTurkey
| | - Sevilay Ayyildiz
- School of MedicineDepartment of NeuroradiologyTechnical University of MunichMunichGermany
- School of MedicineTUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
- Anatomy PhD ProgramGraduate School of Health SciencesKocaeli UniversityIstanbulTurkey
| | - Dila Sayman
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Ramazan Karaca
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Lutfiye Ipek
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Seyda Cankaya
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Ali Behram Salar
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN)Health Sciences and Technology Research Institute (SABITA)Istanbul Medipol UniversityIstanbulTurkey
| | - Behcet Ayyildiz
- Anatomy PhD ProgramGraduate School of Health SciencesKocaeli UniversityIstanbulTurkey
| | - Christian Mikuta
- Translational Research CenterUniversity Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
- Interdisciplinary Biosciences Doctoral Training PartnershipDepartment of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordUK
| | - Nilay Yagci
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Ece Ozdemir Oktem
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Ahmet Ozsimsek
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Halil Aziz Velioglu
- School of MedicineTUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
- Center for Psychiatric NeuroscienceFeinstein Institute for Medical ResearchManhassetNew YorkUSA
| | - Lutfu Hanoglu
- Department of Neurology and NeuroscienceIstanbul Medipol UniversityIstanbulTurkey
| |
Collapse
|
5
|
Mohammadi S, Seyedmirzaei H, Salehi MA, Jahanshahi A, Zakavi SS, Dehghani Firouzabadi F, Yousem DM. Brain-based Sex Differences in Depression: A Systematic Review of Neuroimaging Studies. Brain Imaging Behav 2023; 17:541-569. [PMID: 37058182 PMCID: PMC10102695 DOI: 10.1007/s11682-023-00772-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Major depressive disorder (MDD) is a common psychiatric illness with a wide range of symptoms such as mood decline, loss of interest, and feelings of guilt and worthlessness. Women develop depression more often than men, and the diagnostic criteria for depression mainly rely on female patients' symptoms. By contrast, male depression usually manifests as anger attacks, aggression, substance use, and risk-taking behaviors. Various studies have focused on the neuroimaging findings in psychiatric disorders for a better understanding of their underlying mechanisms. With this review, we aimed to summarize the existing literature on the neuroimaging findings in depression, separated by male and female subjects. A search was conducted on PubMed and Scopus for magnetic resonance imaging (MRI), functional MRI (fMRI), and diffusion tensor imaging (DTI) studies of depression. After screening the search results, 15 MRI, 12 fMRI, and 4 DTI studies were included. Sex differences were mainly reflected in the following regions: 1) total brain, hippocampus, amygdala, habenula, anterior cingulate cortex, and corpus callosum volumes, 2) frontal and temporal gyri functions, along with functions of the caudate nucleus and prefrontal cortex, and 3) frontal fasciculi and frontal projections of corpus callosum microstructural alterations. Our review faces limitations such as small sample sizes and heterogeneity in populations and modalities. But in conclusion, it reflects the possible roles of sex-based hormonal and social factors in the depression pathophysiology.
Collapse
Affiliation(s)
- Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jahanshahi
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Sina Zakavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, USA.
| |
Collapse
|
6
|
Zhang S, She S, Qiu Y, Li Z, Wu X, Hu H, Zheng W, Huang R, Wu H. Multi-modal MRI measures reveal sensory abnormalities in major depressive disorder patients: A surface-based study. Neuroimage Clin 2023; 39:103468. [PMID: 37473494 PMCID: PMC10372163 DOI: 10.1016/j.nicl.2023.103468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/17/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Multi-modal magnetic resonance imaging (MRI) measures are supposed to be able to capture different brain neurobiological aspects of major depressive disorder (MDD). A fusion analysis of structural and functional modalities may better reveal the disease biomarker specific to the MDD disease. METHODS We recruited 30 MDD patients and 30 matched healthy controls (HC). For each subject, we acquired high-resolution brain structural images and resting-state fMRI (rs-fMRI) data using a 3 T MRI scanner. We first extracted the brain morphometric measures, including the cortical volume (CV), cortical thickness (CT), and surface area (SA), for each subject from the structural images, and then detected the structural clusters showing significant between-group differences in each measure using the surface-based morphology (SBM) analysis. By taking the identified structural clusters as seeds, we performed seed-based functional connectivity (FC) analyses to determine the regions with abnormal FC in the patients. Based on a logistic regression model, we performed a classification analysis by selecting these structural and functional cluster-wise measures as features to distinguish the MDD patients from the HC. RESULTS The MDD patients showed significantly lower CV in a cluster involving the right superior temporal gyrus (STG) and middle temporal gyrus (MTG), and lower SA in three clusters involving the bilateral STG, temporal pole gyrus, and entorhinal cortex, and the left inferior temporal gyrus, and fusiform gyrus, than the controls. No significant difference in CT was detected between the two groups. By taking the above-detected clusters as seeds to perform the seed-based FC analysis, we found that the MDD patients showed significantly lower FC between STG/MTG (CV's cluster) and two clusters located in the bilateral visual cortices than the controls. The logistic regression model based on the structural and functional features reached a classification accuracy of 86.7% (p < 0.001) between MDD and controls. CONCLUSION The present study showed sensory abnormalities in MDD patients using the multi-modal MRI analysis. This finding may act as a disease biomarker distinguishing MDD patients from healthy individuals.
Collapse
Affiliation(s)
- Shufei Zhang
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Shenglin She
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Yidan Qiu
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Zezhi Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Xiaoyan Wu
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Huiqing Hu
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Ruiwang Huang
- School of Psychology, Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| |
Collapse
|
7
|
Kotoula V, Evans JW, Punturieri C, Johnson SC, Zarate CA. Functional MRI markers for treatment-resistant depression: Insights and challenges. PROGRESS IN BRAIN RESEARCH 2023; 278:117-148. [PMID: 37414490 PMCID: PMC10501192 DOI: 10.1016/bs.pbr.2023.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Imaging studies of treatment-resistant depression (TRD) have examined brain activity, structure, and metabolite concentrations to identify critical areas of investigation in TRD as well as potential targets for treatment interventions. This chapter provides an overview of the main findings of studies using three imaging modalities: structural magnetic resonance imaging (MRI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS). Decreased connectivity and metabolite concentrations in frontal brain areas appear to characterize TRD, although results are not consistent across studies. Treatment interventions, including rapid-acting antidepressants and transcranial magnetic stimulation (TMS), have shown some efficacy in reversing these changes while alleviating depressive symptoms. However, comparatively few TRD imaging studies have been conducted, and these studies often have relatively small sample sizes or employ different methods to examine a variety of brain areas, making it difficult to draw firm conclusions from imaging studies about the pathophysiology of TRD. Larger studies with more unified hypotheses, as well as data sharing, could help TRD research and spur better characterization of the illness, providing critical new targets for treatment intervention.
Collapse
Affiliation(s)
- Vasileia Kotoula
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States.
| | - Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Claire Punturieri
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Sara C Johnson
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Lu J, Zhang Z, Yin X, Tang Y, Ji R, Chen H, Guang Y, Gong X, He Y, Zhou W, Wang H, Cheng K, Wang Y, Chen X, Xie P, Guo ZV. An entorhinal-visual cortical circuit regulates depression-like behaviors. Mol Psychiatry 2022; 27:3807-3820. [PMID: 35388184 DOI: 10.1038/s41380-022-01540-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Major depressive disorder is viewed as a 'circuitopathy'. The hippocampal-entorhinal network plays a pivotal role in regulation of depression, and its main sensory output, the visual cortex, is a promising target for stimulation therapy of depression. However, whether the entorhinal-visual cortical pathway mediates depression and the potential mechanism remains unknown. Here we report a cortical circuit linking entorhinal cortex layer Va neurons to the medial portion of secondary visual cortex (Ent→V2M) that bidirectionally regulates depression-like behaviors in mice. Analyses of brain-wide projections of Ent Va neurons and two-color retrograde tracing indicated that Ent Va→V2M projection neurons represented a unique population of neurons in Ent Va. Immunostaining of c-Fos revealed that activity in Ent Va neurons was decreased in mice under chronic social defeat stress (CSDS). Both chemogenetic inactivation of Ent→V2M projection neurons and optogenetic inactivation of the projection terminals induced social deficiency, anxiety- and despair-related behaviors in healthy mice. Chemogenetic inactivation of Ent→V2M projection neurons also aggravated these depression-like behaviors in CSDS-resilient mice. Optogenetic activation of Ent→V2M projection terminals rapidly ameliorated depression-like phenotypes. Optical recording using fiber photometry indicated that elevated neural activity in Ent→V2M projection terminals promoted antidepressant-like behaviors. Thus, the Ent→V2M circuit plays a crucial role in regulation of depression-like behaviors, and can function as a potential target for treating major depressive disorder.
Collapse
Affiliation(s)
- Jian Lu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.,IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Zhouzhou Zhang
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Xinxin Yin
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Yingjun Tang
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Runan Ji
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Han Chen
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Yu Guang
- Department of gynecology, The First Affiliated Hospital of Shenzhen University (The Second People's Hospital of Shenzhen) and Dapeng Maternity & Child Healthcare Hospital, 518028, Shenzhen, China
| | - Xue Gong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Wei Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, 400038, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Zengcai V Guo
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China.
| |
Collapse
|
9
|
Rani T, Behl T, Sharma N, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bhatia S, Bungau SG. Exploring the role of biologics in depression. Cell Signal 2022; 98:110409. [PMID: 35843573 DOI: 10.1016/j.cellsig.2022.110409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
Depression is a chronic and prevalent neuropsychiatric disorder; clinical symptoms include excessive sad mood, anhedonia, increased anxiety, disturbed sleep, and cognitive deficits. The exact etiopathogenesis of depression is not well understood. Studies have suggested that tumor necrosis factor-alpha (TNF-α) and interleukins (ILs) perform vital roles in the pathogenesis and treatment of depression. Increasing evidence suggests the upregulation of TNF-α and ILs expression in patients with depression. Therefore, biologics like TNF inhibitors (etanercept, infliximab, adalimumab) and IL inhibitors (ustekinumab) have become key compounds in the treatment of depression. Interestingly, treatment with an antidepressant has been found to decrease the TNF-α level and improve depression-like behaviors in several preclinical and clinical studies. In the current article, we have reviewed the recent findings linking TNF-α and the pathogenesis of depression proving TNF-α inhibitors as potential new therapeutic agents. Animal models and clinical studies further support that TNF-α inhibitors are effective in ameliorating depression-like behaviors. Moreover, studies showed that peripheral injection of TNF-α exhibits depressive symptoms. These symptoms have been improved by treatment with TNF-α inhibitors. Hence suggesting TNF-α inhibitors as potential new antidepressants for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Parctice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
10
|
Grzenda A, Speier W, Siddarth P, Pant A, Krause-Sorio B, Narr K, Lavretsky H. Machine Learning Prediction of Treatment Outcome in Late-Life Depression. Front Psychiatry 2021; 12:738494. [PMID: 34744829 PMCID: PMC8563624 DOI: 10.3389/fpsyt.2021.738494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Recent evidence suggests that integration of multi-modal data improves performance in machine learning prediction of depression treatment outcomes. Here, we compared the predictive performance of three machine learning classifiers using differing combinations of sociodemographic characteristics, baseline clinical self-reports, cognitive tests, and structural magnetic resonance imaging (MRI) features to predict treatment outcomes in late-life depression (LLD). Methods: Data were combined from two clinical trials conducted with depressed adults aged 60 and older, including response to escitalopram (N = 32, NCT01902004) and Tai Chi (N = 35, NCT02460666). Remission was defined as a score of 6 or less on the 24-item Hamilton Rating Scale for Depression (HAMD) at the end of 24 weeks of treatment. Features subsets were constructed from baseline sociodemographic and clinical features, gray matter volumes (GMVs), or both. Three classification algorithms were compared: (1) Support Vector Machine-Radial Bias Function (SVMRBF), (2) Random Forest (RF), and (3) Logistic Regression (LR). A repeated 5-fold cross-validation approach with a wrapper-based feature selection method was used for model fitting. Model performance metrics included Area under the ROC Curve (AUC) and Matthews correlation coefficient (MCC). Cross-validated performance significance was tested by permutation analysis. Classifiers were compared by Cochran's Q and post-hoc pairwise comparisons using McNemar's Chi-Square test with Bonferroni correction. Results: For the RF and SVMRBF algorithms, the combined feature set outperformed the clinical and GMV feature sets with a final cross-validated AUC of 0.83 ± 0.11 and 0.80 ± 0.11, respectively. Both classifiers passed permutation analysis. The LR algorithm performed best using GMV features alone (AUC 0.79 ± 0.14) but failed to pass permutation analysis using any feature set. Performance of the three classifiers differed significantly for all three features sets. Important predictive features of treatment response included anterior and posterior cingulate volumes, depression characteristics, and self-reported health-related quality scores. Conclusion: This preliminary exploration into the use of ML and multi-modal data to identify predictors of general treatment response in LLD indicates that integration of clinical and structural MRI features significantly increases predictive capability. Identified features are among those previously implicated in geriatric depression, encouraging future work in this arena.
Collapse
Affiliation(s)
- Adrienne Grzenda
- Department of Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - William Speier
- Medical Imaging and Informatics Group, Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Prabha Siddarth
- Department of Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anurag Pant
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Beatrix Krause-Sorio
- Department of Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine Narr
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Espinoza Oyarce DA, Shaw ME, Alateeq K, Cherbuin N. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. J Psychiatry Neurosci 2020; 45:406-429. [PMID: 32726102 PMCID: PMC7595741 DOI: 10.1503/jpn.190156] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Structural differences associated with depression have not been confirmed in brain regions apart from the hippocampus. Comorbid anxiety has been inconsistently assessed, and may explain discrepancies in previous findings. We investigated the link between depression, comorbid anxiety and brain structure. METHODS We followed Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines (PROSPERO CRD42018089286). We searched the Cochrane Library, MEDLINE, PsycInfo, PubMed and Scopus, from database inception to Sept. 13, 2018, for MRI case-control studies that reported brain volumes in healthy adults and adults with clinical depression. We summarized mean volumetric differences using meta-analyses, and we assessed demographics, depression factors and segmentation procedure as moderators using meta-regressions. RESULTS We included 112 studies in the meta-analyses, assessing 4911 healthy participants and 5934 participants with depression (mean age 49.8 yr, 68.2% female). Volume effects were greater in late-onset depression and in multiple episodes of depression. Adults with depression and no comorbidity showed significantly lower volumes in the putamen, pallidum and thalamus, as well as significantly lower grey matter volume and intracranial volume; the largest effects were in the hippocampus (6.8%, p < 0.001). Adults with depression and comorbid anxiety showed significantly higher volumes in the amygdala (3.6%, p < 0.001). Comorbid anxiety lowered depression effects by 3% on average. Sex moderated reductions in intracranial volume. LIMITATIONS High heterogeneity in hippocampus effects could not be accounted for by any moderator. Data on symptom severity and medication were sparse, but other factors likely made significant contributions. CONCLUSION Depression-related differences in brain structure were modulated by comorbid anxiety, chronicity of symptoms and onset of illness. Early diagnosis of anxiety symptomatology will prove crucial to ensuring effective, tailored treatments for improving long-term mental health and mitigating cognitive problems, given the effects in the hippocampus.
Collapse
Affiliation(s)
- Daniela A Espinoza Oyarce
- From the Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, ACT, Australia (Espinoza Oyarce, Alateeq, Cherbuin); and the College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia (Shaw)
| | - Marnie E Shaw
- From the Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, ACT, Australia (Espinoza Oyarce, Alateeq, Cherbuin); and the College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia (Shaw)
| | - Khawlah Alateeq
- From the Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, ACT, Australia (Espinoza Oyarce, Alateeq, Cherbuin); and the College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia (Shaw)
| | - Nicolas Cherbuin
- From the Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, ACT, Australia (Espinoza Oyarce, Alateeq, Cherbuin); and the College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia (Shaw)
| |
Collapse
|
12
|
Antidepressants upregulate c-Fos expression in the lateral entorhinal cortex and hippocampal dorsal subiculum: Study in rats. Brain Res Bull 2019; 153:102-108. [DOI: 10.1016/j.brainresbull.2019.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
|
13
|
Klok MPC, van Eijndhoven PF, Argyelan M, Schene AH, Tendolkar I. Structural brain characteristics in treatment-resistant depression: review of magnetic resonance imaging studies. BJPsych Open 2019; 5:e76. [PMID: 31474243 PMCID: PMC6737518 DOI: 10.1192/bjo.2019.58] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) has been related to structural brain characteristics that are correlated with the severity of disease. However, the correlation of these structural changes is less well clarified in treatment-resistant depression (TRD). AIMS To summarise the existing literature on structural brain characteristics in TRD to create an overview of known abnormalities of the brain in patients with MDD, to form hypotheses about the absence or existence of a common pathophysiology of MDD and TRD. METHOD A systematic search of PubMed and the Cochrane Library for studies published between 1998 and August of 2016 investigating structural brain changes in patients with TRD compared with healthy controls or patients with MDD. RESULTS Fourteen articles are included in this review. Lower grey matter volume (GMV) in the anterior cingulate cortex, right cerebellum, caudate nucleus, superior/medial frontal gyrus and hippocampus does not seem to differentiate TRD from milder forms of MDD. However, lower GMV in the putamen, inferior frontal gyrus, precentral gyrus, angular- and post-central gyri together with specific mainly parietal white matter tract changes seem to be more specific structural characteristics of TRD. CONCLUSIONS The currently available data on structural brain changes in patients with TRD compared with milder forms of MDD and healthy controls cannot sufficiently distinguish between a 'shared continuum hypothesis' and a 'different entity hypothesis'. Our review clearly suggests that although there is some overlap in affected brain regions between milder forms of MDD and TRD, TRD also comes with specific alterations in mainly the putamen and parietal white matter tracts. DECLARATION OF INTEREST None.
Collapse
Affiliation(s)
| | - Philip F van Eijndhoven
- Psychiatrist, Department of Psychiatry, Radboud University Medical Center; and Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, the Netherlands
| | - Miklos Argyelan
- Psychiatrist, Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research; andDivision of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, USA
| | - Aart H Schene
- Professor of Psychiatry, Department of Psychiatry, Radboud University Medical Center; and Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, the Netherlands
| | - Indira Tendolkar
- Professor of Psychiatry, Department of Psychiatry, Radboud University Medical Center; Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, the Netherlands;and LVR-Hospital Essen, Department for Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Germany
| |
Collapse
|
14
|
Sandu AL, Artiges E, Galinowski A, Gallarda T, Bellivier F, Lemaitre H, Granger B, Ringuenet D, Tzavara ET, Martinot JL, Paillère Martinot ML. Amygdala and regional volumes in treatment-resistant versus nontreatment-resistant depression patients. Depress Anxiety 2017; 34:1065-1071. [PMID: 28792656 DOI: 10.1002/da.22675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/22/2017] [Accepted: 06/29/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Although treatment-resistant and nontreatment-resistant depressed patients show structural brain anomalies relative to healthy controls, the difference in regional volumetry between these two groups remains undocumented. METHODS A whole-brain voxel-based morphometry (VBM) analysis of regional volumes was performed in 125 participants' magnetic resonance images obtained on a 1.5 Tesla scanner; 41 had treatment-resistant depression (TRD), 40 nontreatment-resistant depression (non-TRD), and 44 were healthy controls. The groups were comparable for age and gender. Bipolar/unipolar features as well as pharmacological treatment classes were taken into account as covariates. RESULTS TRD patients had higher gray matter (GM) volume in the left and right amygdala than non-TRD patients. No difference was found between the TRD bipolar and the TRD unipolar patients, or between the non-TRD bipolar and non-TRD unipolar patients. An exploratory analysis showed that lithium-treated patients in both groups had higher GM volume in the superior and middle frontal gyri in both hemispheres. CONCLUSIONS Higher GM volume in amygdala detected in TRD patients might be seen in perspective with vulnerability to chronicity, revealed by medication resistance.
Collapse
Affiliation(s)
- Anca-Larisa Sandu
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, University of Aberdeen, Aberdeen, UK
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,Department of Psychiatry 91G16, Orsay Hospital, Orsay, France
| | - André Galinowski
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France
| | | | - Frank Bellivier
- APHP Department of Psychiatry, Fernand Widal Hospital, Paris, France
| | - Hervé Lemaitre
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France
| | - Bernard Granger
- APHP Department of Psychiatry, Tarnier Hospital and University Paris Descartes, Paris, France
| | - Damien Ringuenet
- Service de Psychiatrie et Addictologie, Hôpital Paul Brousse, APHP Villejuif, France
| | - Eleni T Tzavara
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,APHP Department of Psychiatry, Tarnier Hospital and University Paris Descartes, Paris, France.,Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1130, UPMC, Paris, France
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,INSERM Unit 1000 at Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,INSERM Unit 1000 at Maison de Solenn, Paris, France.,AP-HP Adolescents Psychopathology and Medicine Department, Maison de Solenn, Cochin Hospital and University Paris Descartes, Paris, France
| |
Collapse
|
15
|
Linking major depression and the neural substrates of associative processing. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 16:1017-1026. [PMID: 27553369 DOI: 10.3758/s13415-016-0449-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has been proposed that mood correlates with the breadth of associative thinking. Here we set this hypothesis to the test in healthy and depressed individuals. Generating contextual associations engages a network of cortical regions including the parahippocampal cortex (PHC), retrosplenial complex, and medial prefrontal cortex. The link between mood, associative processing, and its underlying cortical infrastructure provides a promising avenue for elucidating the mechanisms underlying the cognitive impairments in major depressive disorder (MDD). The participants included 15 nonmedicated individuals with acute major depressive episodes and 15 healthy matched controls. In an fMRI experiment, participants viewed images of objects that were either strongly or weakly associated with a specific context (e.g., a beach chair vs. a water bottle) while rating the commonality of each object. Analyses were performed to examine the brain activation and structural differences between the groups. Consistent with our hypothesis, controls showed greater activation of the contextual associations network than did depressed participants. In addition, PHC structural volume was correlated with ruminative tendencies, and the volumes of the hippocampal subfields were significantly smaller in depressed participants. Surprisingly, depressed participants showed increased activity in the entorhinal cortex (ERC), as compared with controls. We integrated these findings within a mechanistic account linking mood and associative thinking and suggest directions for the future.
Collapse
|
16
|
Murphy JA, Sarris J, Byrne GJ. A Review of the Conceptualisation and Risk Factors Associated with Treatment-Resistant Depression. DEPRESSION RESEARCH AND TREATMENT 2017; 2017:4176825. [PMID: 28840042 PMCID: PMC5559917 DOI: 10.1155/2017/4176825] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/30/2017] [Accepted: 06/11/2017] [Indexed: 01/14/2023]
Abstract
Major depression does not always remit. Difficult-to-treat depression is thought to contribute to the large disease burden posed by depression. Treatment-resistant depression (TRD) is the conventional term for nonresponse to treatment in individuals with major depression. Indicators of the phenomenon are the poor response rates to antidepressants in clinical practice and the overestimation of the efficacy of antidepressants in medical scientific literature. Current TRD staging models are based on anecdotal evidence without an empirical rationale to rank one treatment strategy above another. Many factors have been associated with TRD such as inflammatory system activation, abnormal neural activity, neurotransmitter dysfunction, melancholic clinical features, bipolarity, and a higher traumatic load. This narrative review provides an overview of this complex clinical problem and discusses the reconceptualization of depression using an illness staging model in line with other medical fields such as oncology.
Collapse
Affiliation(s)
- Jenifer A. Murphy
- ARCADIA Research Group, Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
| | - Jerome Sarris
- ARCADIA Research Group, Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
- NICM, School of Health and Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Gerard J. Byrne
- Discipline of Psychiatry, School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:117-26. [PMID: 27046518 DOI: 10.1016/j.pnpbp.2016.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
Treatment-resistant depression (TRD) causes substantial socioeconomic burden. Although a consensus on the definition of TRD has not yet been reached, it is certain that classic monoaminergic antidepressants are ineffective for TRD. One decade ago, many researchers found ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, to be an alternative to classic monoaminergic antidepressants. The major mechanisms of action of ketamine rapidly induce synaptogenesis in the brain-derived neurotrophic factor (BDNF) pathway. Although excessive glutamatergic neurotransmission and consequent excitotoxicity were considered a major cause of TRD, recent evidence suggests that the extrasynaptic glutamatergic receptor signal pathway mainly contributes to the detrimental effects of TRD. Glial cells such as microglia and astrocytes, early life adversity, and glucocorticoid receptor dysfunction participate in complex cross-talk. An appropriate reuptake of glutamate at the astrocyte is crucial for preventing 'spill-over' of synaptic glutamate and binding to the extrasynaptic NMDA receptor. Excessive microglial activation and the inflammatory process cause astrocyte glutamatergic dysfunction, which in turn activates microglial function. Early life adversity and glucocorticoid receptor dysfunction result in vulnerability to stress in adulthood. A maladaptive response to stress leads to increased glutamatergic release and pro-inflammatory cytokines, which then activate microglia. However, since the role of inflammatory mediators such as pro-inflammatory cytokines is not specific for depression, more disease-specific mechanisms should be identified. Last, although much research has focused on ketamine as an alternative antidepressant for TRD, its long-lasting effectiveness and adverse events have not been rigorously demonstrated. Additionally, evidence suggests that substantial brain abnormalities develop in ketamine abusers. Thus, more investigations for ketamine and other novel glutamatergic agents are needed.
Collapse
|
18
|
Ma K, Zhang H, Baloch Z. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-α (TNF-α) in Major Depressive Disorder: A Systematic Review. Int J Mol Sci 2016; 17:733. [PMID: 27187381 PMCID: PMC4881555 DOI: 10.3390/ijms17050733] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is characterized by mood, vegetative, cognitive, and even psychotic symptoms and signs that can cause substantial impairments in quality of life and functioning. Up to now, the exact pathogenesis of MDD remains poorly understood. Recent research has begun to reveal that the pro-inflammatory cytokines, particularly, tumor necrosis factor-α (TNF-α), play an integral role in the pathophysiology of depressive disorders and the mechanism of antidepressant treatment. On the base of several observations: it is found that subsets of MDD patients have enhanced plasma levels TNF-α; antidepressant treatments had linked with the decline of TNF-α; central administration of TNF-α gives rise to sickness behavior which shares features with depression; and a blockade of it can ameliorate depressive symptomatology in animal models and clinical trials. In this review article, we focus on recent evidence linking TNF-α and MDD looking at data from animal and clinical studies, illustrating the pathophysiological role, susceptibility and its therapeutic application in depression. We conclude by discussing future directions for research, in particular the opportunities for the development of novel therapeutics that target TNF-α. This will be very important for designing preventative strategies and for the identification of new drug targets and preventative strategies.
Collapse
Affiliation(s)
- Ke Ma
- Department of Physiology, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hongxiu Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
19
|
Structural MRI-Based Predictions in Patients with Treatment-Refractory Depression (TRD). PLoS One 2015; 10:e0132958. [PMID: 26186455 PMCID: PMC4506147 DOI: 10.1371/journal.pone.0132958] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/21/2015] [Indexed: 12/19/2022] Open
Abstract
The application of machine learning techniques to psychiatric neuroimaging offers the possibility to identify robust, reliable and objective disease biomarkers both within and between contemporary syndromal diagnoses that could guide routine clinical practice. The use of quantitative methods to identify psychiatric biomarkers is consequently important, particularly with a view to making predictions relevant to individual patients, rather than at a group-level. Here, we describe predictions of treatment-refractory depression (TRD) diagnosis using structural T1-weighted brain scans obtained from twenty adult participants with TRD and 21 never depressed controls. We report 85% accuracy of individual subject diagnostic prediction. Using an automated feature selection method, the major brain regions supporting this significant classification were in the caudate, insula, habenula and periventricular grey matter. It was not, however, possible to predict the degree of ‘treatment resistance’ in individual patients, at least as quantified by the Massachusetts General Hospital (MGH-S) clinical staging method; but the insula was again identified as a region of interest. Structural brain imaging data alone can be used to predict diagnostic status, but not MGH-S staging, with a high degree of accuracy in patients with TRD.
Collapse
|
20
|
Abnormalities in the fatty acid composition of the postmortem entorhinal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder. Psychiatry Res 2013; 210:346-50. [PMID: 23731984 DOI: 10.1016/j.psychres.2013.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/20/2013] [Accepted: 05/07/2013] [Indexed: 11/23/2022]
Abstract
Previous studies of postmortem orbitofrontal cortex have shown abnormalities in levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), in individuals with schizophrenia, bipolar disorder, and major depressive disorder (MDD). We have previously measured PUFA levels in the postmortem hippocampus from patients with schizophrenia or bipolar disorder and control subjects; however, we found no significant differences between the groups except for small changes in n-6 PUFAs. Furthermore, our study of the postmortem amygdala showed no significant differences in major PUFAs in individuals with schizophrenia, bipolar disorder, or MDD in comparison with controls. In the present study, we investigated whether there were any changes in PUFAs in the entorhinal cortexes of patients with schizophrenia (n=15), bipolar disorder (n=15), or MDD (n=15) compared with unaffected controls (n=15) matched for characteristics including age and sex. In contrast to previous studies of the orbitofrontal cortex and hippocampus, we found no significant differences in major PUFAs. However, we found a 34.3% decrease in docosapentaenoic acid (DPA) (22:5n-3) in patients with MDD and an 8.7% decrease in docosatetraenoic acid (22:4n-6) in those with schizophrenia, compared with controls. Changes in PUFAs in patients with these psychiatric disorders may be specific to certain brain regions.
Collapse
|
21
|
Decreased interhemispheric coordination in treatment-resistant depression: a resting-state fMRI study. PLoS One 2013; 8:e71368. [PMID: 23936504 PMCID: PMC3732240 DOI: 10.1371/journal.pone.0071368] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/29/2013] [Indexed: 11/19/2022] Open
Abstract
Background Previous studies have demonstrated that patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) differed at neural level. However, it remains unclear if these two subtypes of depression differ in the interhemispheric coordination. This study was undertaken for two purposes: (1) to explore the differences in interhemispheric coordination between these two subtypes by using the voxel-mirrored homotopic connectivity (VMHC) method; and (2) to determine if the difference of interhemispheric coordination can be used as a biomarker(s) to differentiate TRD from both TSD and healthy subjects (HS). Methods Twenty-three patients with TRD, 22 with TSD, and 19 HS participated in the study. Data of these participants were analyzed with the VMHC and seed-based functional connectivity (FC) approaches. Results Compared to the TSD group, the TRD group showed significantly lower VMHC values in the calcarine cortex, fusiform gyrus, hippocampus, superior temporal gyrus, middle cingulum, and precentral gyrus. Lower VMHC values were also observed in the TRD group in the calcarine cortex relative to the HS group. However, the TSD group had no significant change in VMHC value in any brain region compared to the HS group. Receiver operating characteristic curves (ROC) analysis revealed that the VMHC values in the calcarine cortex had discriminatory function distinguishing patients with TRD from patients with TSD as well as those participants in the HS group. Conclusions Lower VMHC values of patients with TRD relative to those with TSD and those in the HS group in the calcarine cortex appeared to be a unique feature for patients with TRD and it may be used as an imaging biomarker to separate patients with TRD from those with TSD or HS.
Collapse
|
22
|
Guo W, Liu F, Xue Z, Gao K, Liu Z, Xiao C, Chen H, Zhao J. Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:51-7. [PMID: 23352887 DOI: 10.1016/j.pnpbp.2013.01.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Previous studies have commonly shown that patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) demonstrate a different cerebellar activity. No study has yet explored resting-state cerebellar-cerebral functional connectivity (FC) in these two groups. Here, seed-based FC approach was employed to test the hypothesis that patients with TRD and TSD had a different cerebellar-cerebral FC. The identified FC might be used to differentiate TRD from TSD. METHODS Twenty-three patients with TRD, 22 patients with TSD, and 19 healthy subjects (HS) matched with age, gender, and education level participated in the scans. Seed-based connectivity analyses were performed by using cerebellar seeds. RESULTS Relative to HS, both patient groups showed significantly decreased cerebellar-cerebral FC with the prefrontal cortex (PFC) (superior, middle, and inferior frontal gyrus) and default mode network (DMN) [superior, middle, and inferior temporal gyrus, precuneus (PCu), and inferior parietal lobule (IPL)], and increased FC with visual recognition network (lingual gyrus, middle occipital gyrus, and fusiform) and parahippocampal gyrus. However, the TRD group exhibited a more decreased FC than the TSD group, mainly in connected regions within DMN [PCu, angular gyrus (AG) and IPL]. Further receiver operating characteristic curves (ROC) analyses showed that cerebellar-DMN couplings could be applied as markers to differentiate the two subtypes with relatively high sensitivity and specificity. CONCLUSIONS Both patient groups demonstrate similar pattern of abnormal cerebellar-cerebral FC. Decreased FC between the cerebellum and regions within DMN might be used to separate the two patient groups.
Collapse
Affiliation(s)
- Wenbin Guo
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mohamed BMSA, Aboul-Fotouh S, Ibrahim EA, Shehata H, Mansour AA, Yassin NAZ, El-Eraky W, Abdel-Tawab AM. Effects of pentoxifylline, 7-nitroindazole, and imipramine on tumor necrosis factor-α and indoleamine 2,3-dioxygenase enzyme activity in the hippocampus and frontal cortex of chronic mild-stress-exposed rats. Neuropsychiatr Dis Treat 2013; 9:697-708. [PMID: 23785234 PMCID: PMC3682807 DOI: 10.2147/ndt.s41020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the role of tumor necrosis factor (TNF)-α and the neuronal nitric oxide synthase enzyme in dysregulation of indoleamine 2,3-dioxygenase (IDO) enzyme, and hence serotonin availability in chronic mild stress (CMS), an animal model of depression. METHODS RATS WERE DIVIDED INTO FIVE GROUPS: two control and CMS-exposed for 6 weeks, and another three groups exposed to CMS and administered pentoxifylline 50 mg/kg/day intraperitoneally, 7-nitroindazole 40 mg/kg/day subcutaneously, or imipramine 20 mg/kg/day intraperitoneally for the previous 3 CMS weeks. Rats were assessed for neurochemical and immunohistochemical abnormalities. RESULTS Pentoxifylline-, 7-nitroindazole-, and imipramine-treated rats showed amelioration of CMS-induced behavioral deficits that was accompanied by significant reduction in kynurenine/serotonin molar ratio and nitrates/nitrites in frontal cortex and hippocampus. In the pentoxifylline and 7-nitroindazole groups, serum TNF-α was reduced relative to the CMS group (18.54 ± 0.85 and 19.16 ± 1.54 vs 26.20 ± 1.83 pg/mL, respectively; P < 0.05). Exposure to CMS increased TNF-α and IDO immunohistochemical staining scores in both hippocampus and midbrain raphe nuclei. 7-Nitroindazole and pentoxifylline significantly (P < 0.05) reduced TNF-α immunostaining in hippocampus and raphe nuclei, with significant (P < 0.01) reduction of IDO immunostaining in raphe nuclei. Likewise, imipramine reduced TNF-α immunostaining (P < 0.05) in hippocampus. CONCLUSION Neuronal nitric oxide synthase and TNF-α may play a concerted role in modulating IDO enzyme activity in CMS-exposed rats and provide additional evidence for possible alternative approaches to switch the neurobiological processes in depression.
Collapse
Affiliation(s)
- Bassim MSA Mohamed
- Department of Pharmacology, National Research Centre, Cairo, Egypt
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Sawsan Aboul-Fotouh
- Department of Pharmacology, Ain Shams University, Cairo, Egypt
- Clinical Pharmacology Unit, Ain Shams University, Cairo, Egypt
| | - Eman A Ibrahim
- Department of Pathology, Ain Shams University, Cairo, Egypt
| | - Hanan Shehata
- Department of Medical Biochemistry and Molecular Biology, Ain Shams University, Cairo, Egypt
| | - Amal A Mansour
- Department of Medical Biochemistry and Molecular Biology, Ain Shams University, Cairo, Egypt
| | - Nemat AZ Yassin
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | - Wafaa El-Eraky
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | - Ahmed M Abdel-Tawab
- Department of Pharmacology, Ain Shams University, Cairo, Egypt
- Clinical Pharmacology Unit, Ain Shams University, Cairo, Egypt
| |
Collapse
|
24
|
An Investigation of Medial Temporal Lobe Changes and Cognition Following Antidepressant Response: A Prospective rTMS Study. Brain Stimul 2013; 6:346-54. [DOI: 10.1016/j.brs.2012.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/22/2012] [Accepted: 06/22/2012] [Indexed: 11/18/2022] Open
|
25
|
Abstract
It is increasingly recognized that we need a better understanding of how mental disorders such as depression alter the brain's functional connections to improve both early diagnosis and therapy. A new holistic approach has been used to investigate functional connectivity changes in the brains of patients suffering from major depression using resting-state functional magnetic resonance imaging (fMRI) data. A canonical template of connectivity in 90 different brain regions was constructed from healthy control subjects and this identified a six-community structure with each network corresponding to a different functional system. This template was compared with functional networks derived from fMRI scans of both first-episode and longer-term, drug resistant, patients suffering from severe depression. The greatest change in both groups of depressed patients was uncoupling of the so-called 'hate circuit' involving the superior frontal gyrus, insula and putamen. Other major changes occurred in circuits related to risk and action responses, reward and emotion, attention and memory processing. A voxel-based morphometry analysis was also carried out but this revealed no evidence in the depressed patients for altered gray or white matter densities in the regions showing altered functional connectivity. This is the first evidence for the involvement of the 'hate circuit' in depression and suggests a potential reappraisal of the key neural circuitry involved. We have hypothesized that this may reflect reduced cognitive control over negative feelings toward both self and others.
Collapse
|
26
|
Guo WB, Liu F, Chen JD, Gao K, Xue ZM, Xu XJ, Wu RR, Tan CL, Sun XL, Liu ZN, Chen HF, Zhao JP. Abnormal neural activity of brain regions in treatment-resistant and treatment-sensitive major depressive disorder: a resting-state fMRI study. J Psychiatr Res 2012; 46:1366-1373. [PMID: 22835912 DOI: 10.1016/j.jpsychires.2012.07.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 07/01/2012] [Accepted: 07/06/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Patients with treatment-resistant depression (TRD) and those with treatment-sensitive depression (TSD) responded to antidepressants differently. Previous studies have commonly shown that patients with TRD or TSD had abnormal neural activity in different brain regions. In the present study, we used a coherence-based ReHo (Cohe-ReHo) approach to test the hypothesis that patients with TRD or TSD had abnormal neural activity in different brain regions. METHODS Twenty-three patients with TRD, 22 with TSD, and 19 healthy subjects (HS) matched with gender, age, and education level participated in the study. RESULTS ANOVA analysis revealed widespread differences in Cohe-ReHo values among the three groups in different brain regions which included bilateral superior frontal gyrus, bilateral cerebellum, left inferior temporal gyrus, left occipital cortex, and both sides of fusiform gyrus. Compared to HS, lower Cohe-ReHo values were observed in TRD group in bilateral superior frontal gyrus and left cerebellum; in contrast, in TSD group, lower Cohe-ReHo values were mainly found in bilateral superior frontal gyrus. Compared to TSD group, TRD group had lower Cohe-ReHo in bilateral cerebellum and higher Cohe-ReHo in left fusiform gyrus. There was a negative correlation between Cohe-ReHo values of the left fusiform gyrus and illness duration in the pooled patients (r = 0.480, p = 0.001). The sensitivity and specificity of cerebellar Cohe-ReHo values differentiating TRD from TSD were 83% and 86%, respectively. CONCLUSIONS Compared to healthy controls, both TRD and TSD patients shared the majority of brain regions with abnormal neural activity. However, the lower Cohe-ReHo values in the cerebellum might be as a marker to differentiate TRD from TSD with high sensitivity and specificity.
Collapse
Affiliation(s)
- Wen-bin Guo
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ma C, Ding J, Li J, Guo W, Long Z, Liu F, Gao Q, Zeng L, Zhao J, Chen H. Resting-state functional connectivity bias of middle temporal gyrus and caudate with altered gray matter volume in major depression. PLoS One 2012; 7:e45263. [PMID: 23028892 PMCID: PMC3454420 DOI: 10.1371/journal.pone.0045263] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/14/2012] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) studies have indicated that the structure deficits and resting-state functional connectivity (FC) imbalances in cortico-limbic circuitry might underline the pathophysiology of MDD. Using structure and functional MRI, our aim is to investigate gray matter abnormalities in patients with treatment-resistant depression (TRD) and treatment-responsive depression (TSD), and test whether the altered gray matter is associated with altered FC. Voxel-based morphometry was used to investigate the regions with gray matter abnormality and FC analysis was further conducted between each gray matter abnormal region and the remaining voxels in the brain. Using one-way analysis of variance, we found significant gray matter abnormalities in the right middle temporal cortex (MTG) and bilateral caudate among the TRD, TSD and healthy controls. For the FC of the right MTG, we found that both the patients with TRD and TSD showed altered connectivity mainly in the default-mode network (DMN). For the FC of the right caudate, both patient groups showed altered connectivity in the frontal regions. Our results revealed the gray matter reduction of right MTG and bilateral caudate, and disrupted functional connection to widely distributed circuitry in DMN and frontal regions, respectively. These results suggest that the abnormal DMN and reward circuit activity might be biomarkers of depression trait.
Collapse
Affiliation(s)
- Chaoqiong Ma
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jurong Ding
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jun Li
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Wenbin Guo
- Mental Health Institute, The Second Xiangya Hospital, Central South University Changsha, Hunan, China
- Mental Health Center, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiliang Long
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Feng Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Qing Gao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Ling Zeng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jingping Zhao
- Mental Health Institute, The Second Xiangya Hospital, Central South University Changsha, Hunan, China
- * E-mail: (JZ); (HC)
| | - Huafu Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
- * E-mail: (JZ); (HC)
| |
Collapse
|
28
|
Guo WB, Liu F, Chen JD, Xu XJ, Wu RR, Ma CQ, Gao K, Tan CL, Sun XL, Xiao CQ, Chen HF, Zhao JP. Altered white matter integrity of forebrain in treatment-resistant depression: a diffusion tensor imaging study with tract-based spatial statistics. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:201-206. [PMID: 22504778 DOI: 10.1016/j.pnpbp.2012.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND The association between alterations of the white matter (WM) integrity in brain regions and mood dysregulation has been reported in major depressive disorder (MDD). However, there has never been a neuroimaging study in patients who have treatment-resistant depression (TRD) and are in a current treatment-resistant state. In the present study, we used diffusion tensor imaging (DTI) with tract-based spatial statistics (TBSS) method to investigate the WM integrity of different brain regions in patients who had TRD and were in a current treatment-resistant state. METHODS Twenty-three patients with TRD and Hamilton Rating Scale total score of ≥18 and 19 healthy controls matched with age, gender, and education level to patients were scanned with DTI. Thirty 4 mm thick, no gap, contiguous axial slices were acquired and fractional anisotropy (FA) images were generated for each participant. An automated TBSS approach was used to analyze the data. RESULTS Voxel-wise statistics revealed that patients with TRD had lower FA values in the right anterior limb of internal capsule, the body of corpus callosum, and bilateral external capsule compared to healthy subjects. Patients with TRD did not have increased FA values in any brain regions compared to healthy subjects. There was no correlation between the FA values in any brain region and patients' demographics and the severity of illness. CONCLUSIONS Our findings suggest the abnormalities of the WM integrity of neuronal tracts connecting cortical and subcortical nuclei and two brain hemispheres may play a key role in the pathogenesis of TRD.
Collapse
Affiliation(s)
- Wen-bin Guo
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu F, Guo W, Yu D, Gao Q, Gao K, Xue Z, Du H, Zhang J, Tan C, Liu Z, Zhao J, Chen H. Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS One 2012; 7:e40968. [PMID: 22815880 PMCID: PMC3398877 DOI: 10.1371/journal.pone.0040968] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 06/19/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies have found numerous brain changes in patients with major depressive disorder (MDD), but no neurological biomarker has been developed to diagnose depression or to predict responses to antidepressants. In the present study, we used multivariate pattern analysis (MVPA) to classify MDD patients with different therapeutic responses and healthy controls and to explore the diagnostic and prognostic value of structural neuroimaging data of MDD. METHODOLOGY/PRINCIPAL FINDINGS Eighteen patients with treatment-resistant depression (TRD), 17 patients with treatment-sensitive depression (TSD) and 17 matched healthy controls were scanned using structural MRI. Voxel-based morphometry, together with a modified MVPA technique which combined searchlight algorithm and principal component analysis (PCA), was used to classify the subjects with TRD, those with TSD and healthy controls. The results revealed that both gray matter (GM) and white matter (WM) of frontal, temporal, parietal and occipital brain regions as well as cerebellum structures had a high classification power in patients with MDD. The accuracy of the GM and WM that correctly discriminated TRD patients from TSD patients was both 82.9%. Meanwhile, the accuracy of the GM that correctly discriminated TRD or TSD patients from healthy controls were 85.7% and 82.4%, respectively; and the WM that correctly discriminated TRD or TSD patients from healthy controls were 85.7% and 91.2%, respectively. CONCLUSIONS/SIGNIFICANCE These results suggest that structural MRI with MVPA might be a useful and reliable method to study the neuroanatomical changes to differentiate patients with MDD from healthy controls and patients with TRD from those with TSD. This method might also be useful to study potential brain regions associated with treatment response in patients with MDD.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wenbin Guo
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Mental Health Center, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Dengmiao Yu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qing Gao
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Keming Gao
- The Mood and Anxiety Clinic in the Mood Disorders Program of the Department of Psychiatry at Case Western Reserve University School of Medicine/University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Zhimin Xue
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Handan Du
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianwei Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Changlian Tan
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhening Liu
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingping Zhao
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huafu Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Tu PC, Chen LF, Hsieh JC, Bai YM, Li CT, Su TP. Regional cortical thinning in patients with major depressive disorder: a surface-based morphometry study. Psychiatry Res 2012; 202:206-13. [PMID: 22521631 DOI: 10.1016/j.pscychresns.2011.07.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 06/02/2011] [Accepted: 07/11/2011] [Indexed: 12/18/2022]
Abstract
This study uses surfaced-based morphometry to investigate cortical thinning and its functional correlates in patients with major depressive disorder (MDD). Subjects with MDD (N=36) and healthy control subjects (N=36) were enrolled in the study. Each subject received T1 structural magnetic resonance imaging (MRI), clinical evaluations, and neuropsychological examinations of executive functions with the Color Trail Test (CTT) and the Wisconsin Card Sorting Test (WCST). This study used an automated surface-based method (FreeSurfer) to measure cortical thickness and to generate the thickness maps for each subject. Statistical comparisons were performed using a general linear model. Compared with healthy controls, subjects with MDD showed the largest area of cortical thinning in the prefrontal cortex. This study also noted smaller areas of cortical thinning in the bilateral inferior parietal cortex, left middle temporal gyrus, left entorhinal cortex, left lingual cortex, and right postcentral gyrus. Regression analysis demonstrated cortical thinning in several frontoparietal regions, predicting worse executive performance measured by CTT 2, though the patterns of cortical thickness/executive performance correlation differed in healthy controls and MDD subjects. In conclusion, the results provide further evidence for the significant role of a prefrontal structural deficit and an aberrant structural/functional relationship in patients with MDD.
Collapse
Affiliation(s)
- Pei-Chi Tu
- Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Guo WB, Liu F, Xue ZM, Gao K, Wu RR, Ma CQ, Liu ZN, Xiao CQ, Chen HF, Zhao JP. Altered white matter integrity in young adults with first-episode, treatment-naive, and treatment-responsive depression. Neurosci Lett 2012; 522:139-44. [PMID: 22721700 DOI: 10.1016/j.neulet.2012.06.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/18/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
Abnormalities of the white matter (WM) tracts integrity in brain areas involved in emotional regulation have been postulated in major depressive disorder (MDD). However, there is no diffusion tensor imaging (DTI) study in patients with treatment-responsive MDD at present. DTI scans were performed on 22 patients with treatment-responsive MDD and 19 well-matched healthy subjects. Tract-based spatial statistics (TBSS) approach was employed to analyze the scans. Voxel-wise statistics revealed four brain WM tracts with lower fractional anisotropy (FA) in patients compared to healthy subjects: the bilateral internal capsule, the genu of corpus callosum, the bilateral anterior corona radiata, and the right external capsule. FA values were nowhere higher in patients compared to healthy subjects. Our findings demonstrate that the abnormalities of the WM tracts, major in the projection fibers and corpus callosum, may contribute to the pathogenesis of treatment-responsive MDD.
Collapse
Affiliation(s)
- Wen-bin Guo
- Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Furtado CP, Hoy KE, Maller JJ, Savage G, Daskalakis ZJ, Fitzgerald PB. Cognitive and volumetric predictors of response to repetitive transcranial magnetic stimulation (rTMS) - a prospective follow-up study. Psychiatry Res 2012; 202:12-9. [PMID: 22608156 DOI: 10.1016/j.pscychresns.2012.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/30/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
As the prevalence of treatment resistant depression (TRD) continues to rise, it remains a clinically important issue to identify neurobiological-, patient- and treatment-related factors that could potentially predict response to treatment. Medial temporal lobe (MTL) structures, in particular the hippocampus and amygdala have been implicated in inferior treatment response. The role of related structures such as the entorhinal cortex and the impact of MTL abnormalities on neurocognitive function, however, have not been systematically examined. The current study investigated MTL abnormalities and neurocognitive characteristics of eventual treatment responders and non-responders to a course of repetitive transcranial magnetic stimulation (rTMS) in order to identify potential predictors of treatment outcome. Prior to rTMS treatment all patients underwent magnetic resonance imaging (MRI) and neuropsychological assessment. MRI analysis was conducted using FreeSurfer 5.0. There was a 50% response rate following up to a 6-week course of daily rTMS treatments. Treatment response was defined as 50% reduction in Hamilton Depression Rating Scale and BDI-II scores from baseline. There was no difference in pre-treatment neurocognitive profiles and MTL volumes between eventual treatment responders and non-responders. Smaller pre-treatment left hippocampus volume showed a trend towards predicting eventual subjective improvement in depressive symptomatology. Although preliminary, our findings suggest that structural abnormalities may have some potential for predicting outcome to rTMS.
Collapse
Affiliation(s)
- Christina P Furtado
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University School of Psychology and Psychiatry, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Guo WB, Liu F, Xue ZM, Xu XJ, Wu RR, Ma CQ, Wooderson SC, Tan CL, Sun XL, Chen JD, Liu ZN, Xiao CQ, Chen HF, Zhao JP. Alterations of the amplitude of low-frequency fluctuations in treatment-resistant and treatment-response depression: a resting-state fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:153-160. [PMID: 22306865 DOI: 10.1016/j.pnpbp.2012.01.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/20/2011] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
BACKGROUND Patients with treatment-resistant depression (TRD) and those with treatment-response depression (TSD) respond to antidepressants differently and previous studies have commonly reported different brain networks in resistant and nonresistant patients. Using the amplitude of low-frequency fluctuations (ALFF) approach, we explored ALFF values of the brain regions in TRD and TSD patients at resting state to test the hypothesis of the different brain networks in TRD and TSD patients. METHODS Eighteen TRD patients, 17 TSD patients and 17 gender-, age-, and education-matched healthy subjects participated in the resting-state fMRI scans. RESULTS There are widespread differences in ALFF values among TRD patients, TSD patients and healthy subjects throughout the cerebellum, the visual recognition circuit (middle temporal gyrus, middle/inferior occipital gyrus and fusiform), the hate circuit (putamen), the default circuit (ACC and medial frontal gyrus) and the risk/action circuit (inferior frontal gyrus). The differences in brain circuits between the TRD and TSD patients are mainly in the cerebellum, the visual recognition circuit and the default circuit. CONCLUSIONS The affected brain circuits of TRD patients might be partly different from those of TSD patients.
Collapse
Affiliation(s)
- Wen-bin Guo
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Guo WB, Liu F, Xue ZM, Yu Y, Ma CQ, Tan CL, Sun XL, Chen JD, Liu ZN, Xiao CQ, Chen HF, Zhao JP. Abnormal neural activities in first-episode, treatment-naïve, short-illness-duration, and treatment-response patients with major depressive disorder: a resting-state fMRI study. J Affect Disord 2011; 135:326-331. [PMID: 21782246 DOI: 10.1016/j.jad.2011.06.048] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Abnormality of limbic-cortical networks was postulated in depression. Using a regional homogeneity (ReHo) approach, we explored the regional homogeneity (ReHo) of the brain regions in patients with first-episode, treatment-naïve, short-illness-duration, and treatment-response depression in resting state to test the abnormality hypothesis of limbic-cortical networks in major depressive disorder (MDD). METHODS Seventeen patients with treatment-response MDD and 17 gender-, age-, and education-matched healthy subjects participated in the resting-state fMRI scans. CONCLUSIONS Our findings suggested the abnormality of limbic-cortical networks in first-episode, treatment-naïve, short-illness-duration, and treatment-response MDD patients, and added an expanding literature to the abnormality hypothesis of limbic-cortical networks in MDD.
Collapse
Affiliation(s)
- Wen-bin Guo
- Mental Health Center, First Affiliated Hospital, Guangxi Medical University; Nanning, Guangxi 530021, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Depression, hypothalamic pituitary adrenal axis, and hippocampal and entorhinal cortex volumes--the SMART Medea study. Biol Psychiatry 2011; 70:373-80. [PMID: 21439552 DOI: 10.1016/j.biopsych.2011.01.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/18/2011] [Accepted: 01/27/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND Structural brain changes have often been found in major depressive disorder (MDD), and it is thought that hypothalamic-pituitary-adrenal (HPA) axis hyperactivity may explain this relation. We investigated the association of MDD and history of depression with hippocampal and entorhinal cortex volumes and whether HPA axis activity explained this association. METHODS In 636 participants with a history of atherosclerotic disease (mean age 62 ± 9 years, 81% male) from the second Manifestation of ARTerial disease-Memory depression and aging (SMART-Medea) study, a 12-month diagnosis of MDD and history of depression were assessed. Age of first depressive episode was classified into early-onset depression (< 50 years) and late-onset depression (≥ 50 years). HPA axis regulation was assessed by four morning saliva samples, two evening samples, and one awakening sample after .5 mg dexamethasone. Hippocampus and entorhinal cortex volume were manually outlined on three-dimensional T1-weighted magnetic resonance images. RESULTS General linear models adjusted for demographics, vascular risk, antidepressant use, and white matter lesions showed that ever having had MDD was associated with smaller hippocampal volumes but not with entorhinal cortex volumes. Remitted MDD was related to smaller entorhinal cortex volumes (p < .05). Participants with early-onset depression had smaller hippocampal volumes than those who were never depressed (p < .05), whereas participants with late-onset depression had smaller entorhinal cortex volumes (p < .05). HPA axis activity did not explain these differences. CONCLUSIONS We found differential associations of age of onset of depression on hippocampal and entorhinal cortex volumes, which could not be explained by alterations in HPA axis regulation.
Collapse
|
36
|
Guo WB, Sun XL, Liu L, Xu Q, Wu RR, Liu ZN, Tan CL, Chen HF, Zhao JP. Disrupted regional homogeneity in treatment-resistant depression: a resting-state fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1297-1302. [PMID: 21338650 DOI: 10.1016/j.pnpbp.2011.02.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/12/2011] [Accepted: 02/13/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND Using a newly developed regional homogeneity (ReHo) approach, we were to explore the features of brain activity in patients with treatment-resistant depression (TRD) in resting state, and further to examine the relationship between abnormal brain activity in TRD patients and specific symptom factors derived from ratings on the Hamilton Rating Scale for Depression (HRSD). METHODS 24 patients with TRD and 19 gender-, age-, and education-matched healthy subjects participated in the fMRI scans. RESULTS 1. Compared with healthy controls, decreased ReHo were found in TRD patients in the left insula, superior temporal gyrus, inferior frontal gyrus, lingual gyrus and cerebellumanterior lobe (culmen) (p<0.05, corrected). 2. Compared with healthy controls, increased ReHo were found in the left superior temporal gyrus, cerebellum posterior lobe (tuber), cerebellum anterior lobe (culmen), the right cerebellar tonsil and bilateral fusiform gyrus (p<0.05, corrected). 3. There was no correlation between the ReHo values in any brain region detected in our study and the patients' age, years of education, illness duration, HRSD total score and its symptom factors. LIMITATION The influence of antidepressants to the brain activity in TRD patients was not fully eliminated. CONCLUSIONS The pathogenesis of TRD may be attributed to abnormal neural activity in multiple brain regions.
Collapse
Affiliation(s)
- Wen-bin Guo
- Mental health Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Beblo T, Sinnamon G, Baune BT. Specifying the Neuropsychology of Affective Disorders: Clinical, Demographic and Neurobiological Factors. Neuropsychol Rev 2011; 21:337-59. [PMID: 21660503 DOI: 10.1007/s11065-011-9171-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/24/2011] [Indexed: 12/30/2022]
|
38
|
Prognostic prediction of therapeutic response in depression using high-field MR imaging. Neuroimage 2010; 55:1497-503. [PMID: 21134472 DOI: 10.1016/j.neuroimage.2010.11.079] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/01/2010] [Accepted: 11/26/2010] [Indexed: 02/05/2023] Open
Abstract
Despite significant advances in the treatment of major depression, there is a high degree of variability in how patients respond to treatment. Approximately 70% of patients show some improvement following standard antidepressant treatment and are classified as having non-refractory depressive disorder (NDD), while the remaining 30% of patients do not respond to treatment and are classified as having refractory depressive disorder (RDD). At present, there are no objective, neurological markers which can be used to identify individuals with depression and predict clinical outcome. We therefore examined the diagnostic and prognostic potential of pre-treatment structural neuroanatomy using support vector machine (SVM). Sixty-one drug-naïve adults suffering from depression and 42 healthy volunteers were scanned using structural magnetic resonance imaging (sMRI). Patients then received standard antidepressant medication (either tricyclic, typical serotonin-norepinephrine reuptake inhibitor or typical selective serotonin reuptake inhibitor). Based on clinical outcome, we selected two groups of RDD (n=23) and NDD (n=23) patients matched for age, sex and pre-treatment severity of depression. Diagnostic accuracy of gray matter was 67.39% for RDD (p=0.01) and 76.09% for NDD (p<0.001), while diagnostic accuracy of white matter was 58.70% for RDD (p=0.13) and 84.65% for NDD (p<0.001). SVM applied to gray matter correctly distinguished between RDD and NDD patients with an accuracy of 69.57% (p=0.006); in contrast, SVM applied to white matter predicted clinical outcome with an accuracy of 65.22% (p=0.02). These results indicate that both gray and white matter have diagnostic and prognostic potential in major depression and may provide an initial step towards the use of biological markers to inform clinical treatment. Future studies will benefit from the integration of structural neuroimaging with other imaging modalities as well as genetic, clinical and cognitive information.
Collapse
|
39
|
Zhou Y, Qin LD, Chen J, Qian LJ, Tao J, Fang YR, Xu JR. Brain microstructural abnormalities revealed by diffusion tensor images in patients with treatment-resistant depression compared with major depressive disorder before treatment. Eur J Radiol 2010; 80:450-4. [PMID: 20634013 DOI: 10.1016/j.ejrad.2010.06.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/20/2010] [Accepted: 06/21/2010] [Indexed: 12/16/2022]
Abstract
Treatment-resistant depression (TRD) is a therapeutic challenge for clinicians. Despite a growing interest in this area, an understanding of the pathophysiology of depression, particularly TRD, remains lacking. This study aims to detect the white matter abnormalities of whole brain fractional anisotropy (FA) in patients with TRD compared with major depressive disorder (MDD) before treatment by voxel-based analysis using diffusion tensor imaging. A total of 100 patients first diagnosed with untreated MDD underwent diffusion tensor imaging scans. 8 weeks after the first treatment, 54 patients showed response to the medication, whereas 46 did not. Finally, 20 patients were diagnosed with TRD after undergoing another treatment. A total of 20 patients with TRD and another 20 with MDD before treatment matched in gender, age, and education was enrolled in the research. For every subject, an FA map was generated and analyzed using SPM5. Subsequently, t-test was conducted to compare the FA values voxel to voxel between the two groups (p<0.001 [FDR corrected], t>7.57, voxel size>30). Voxel-based morphometric (VBM) analysis was performed using T1W images. Significant reductions in FA were found in the white matter located in the bilateral of the hippocampus (left hippocampus: t=7.63, voxel size=50; right hippocampus: t=7.82, voxel size=48). VBM analysis revealed no morphological abnormalities between the two groups. Investigation of brain anisotropy revealed significantly decreased FA in both sides of the hippocampus. Although preliminary, our findings suggest that microstructural abnormalities in the hippocampus indicate vulnerability to treatment resistance.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Radiology, Ren-Ji Hospital, Jiao Tong University Medical School, Shanghai 200127, PR China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Werner NS, Meindl T, Materne J, Engel RR, Huber D, Riedel M, Reiser M, Hennig-Fast K. Functional MRI study of memory-related brain regions in patients with depressive disorder. J Affect Disord 2009; 119:124-31. [PMID: 19346000 DOI: 10.1016/j.jad.2009.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND Structural imaging studies of patients suffering from depressive disorder have revealed reduced hippocampal volume in the majority of cases. The present study aimed specifically at investigating the hippocampal function in unipolar depression using functional magnetic resonance imaging (fMRI). METHODS Eleven unipolar depressed patients and eleven healthy control participants matched for age, gender and years of education underwent an associative learning paradigm during fMRI scanning. In the encoding condition of the paradigm, participants had to learn face-profession pairs. These pairs had to be remembered in the retrieval condition. RESULTS Hippocampal activity did not differ between depressive patients and control participants during encoding or retrieval. However, during encoding, depressive patients showed increased activity in the left parahippocampal gyrus and decreased activity in frontal and parietal regions. Retrieval of the associative pairs also yielded decreased activation patterns in depressive patients in frontal and parietal areas. LIMITATIONS The present findings may be limited by the small sample size of participants. Additionally the comparatively young age of the depressive sample could indicate a comparatively shorter duration of illness, and thereby less salient measurable hippocampal abnormalities. CONCLUSION The current study suggests that depression is associated with modified memory-related brain function. In particular the parahippocampal gyrus, the prefrontal cortex and parietal regions show functional alterations during associative learning. These structures as well as their interrelationships may play an important role in the pathogenesis of depressive disorder.
Collapse
Affiliation(s)
- Natalie S Werner
- Clinic of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sun J, Maller JJ, Daskalakis ZJ, Furtado CC, Fitzgerald PB. Morphology of the corpus callosum in treatment-resistant schizophrenia and major depression. Acta Psychiatr Scand 2009; 120:265-73. [PMID: 19486330 DOI: 10.1111/j.1600-0447.2009.01389.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To identify possible differences in the mean midsagittal corpus callosum (CC) total and subdivision areas in treatment-resistant schizophrenia and depression (TRS and TRD) patients. METHOD Areas of the total CC and its five equidistant subregions (from CC1 to CC5) obtained by parallel grid partitioning schemes were manually segmented from brain MRI of 42 TRS, 45 TRD patients and 30 healthy controls. The intracranial volume (ICV) normalized areas were calculated and compared between groups. RESULTS When compared with controls, patients with TRS had reduced ICV and a larger CC5, and TRD patients had a smaller CC4 while no significant difference in CC total area in patients with TRS or TRD was found. Multiple individual segments and total CC areas were significantly larger in TRS than TRD patients after normalization. CONCLUSION Patients with TRS and TRD have different CC morphological characteristics, and therefore there may be aberrant interhemispheric connectivity in schizophrenia and major depressive disorder patients.
Collapse
Affiliation(s)
- J Sun
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | | | | | | | | |
Collapse
|
42
|
Zhang TJ, Wu QZ, Huang XQ, Sun XL, Zou K, Lui S, Liu F, Hu JM, Kuang WH, Li DM, Li F, Chen HF, Chan RCK, Mechelli A, Gong QY. Magnetization transfer imaging reveals the brain deficit in patients with treatment-refractory depression. J Affect Disord 2009; 117:157-161. [PMID: 19211150 DOI: 10.1016/j.jad.2009.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/04/2009] [Accepted: 01/05/2009] [Indexed: 02/05/2023]
Abstract
BACKGROUND Studies on treatment resistant depression (TRD) using advanced magnetic resonance imaging techniques are very limited. METHODS A group of 15 patients with clinically defined TRD and 15 matched healthy controls underwent magnetization transfer imaging (MTI) and T1-weighted (T1W) imaging. MTI data were processed and analyzed voxel-wised in SPM2. A voxel based morphometric (VBM) analysis was performed using T1W images. RESULTS Reduced magnetization transfer ratio was observed in the TRD group relative to normal controls in the anterior cingulate, insula, caudate tail and amygdala-parahippocampal areas. All these regions were identified within the right hemisphere. VBM revealed no morphological abnormalities in the TRD group compared to the control group. Negative correlations were found between MRI and clinical measures in the inferior temporal gyrus. LIMITATIONS The cross-sectional design and small sample size. CONCLUSIONS The findings suggest that MTI is capable of identifying subtle brain abnormalities which underlie TRD and in general more sensitive than morphological measures.
Collapse
Affiliation(s)
- Ti-Jiang Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|