1
|
mGluR5 binding changes during a mismatch negativity task in a multimodal protocol with [ 11C]ABP688 PET/MR-EEG. Transl Psychiatry 2022; 12:6. [PMID: 35013095 PMCID: PMC8748790 DOI: 10.1038/s41398-021-01763-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, the metabotropic glutamate receptor 5 (mGluR5) is the subject of several lines of research in the context of neurology and is of high interest as a target for positron-emission tomography (PET). Here, we assessed the feasibility of using [11C]ABP688, a specific antagonist radiotracer for an allosteric site on the mGluR5, to evaluate changes in glutamatergic neurotransmission through a mismatch-negativity (MMN) task as a part of a simultaneous and synchronized multimodal PET/MR-EEG study. We analyzed the effect of MMN by comparing the changes in nondisplaceable binding potential (BPND) prior to (baseline) and during the task in 17 healthy subjects by applying a bolus/infusion protocol. Anatomical and functional regions were analyzed. A small change in BPND was observed in anatomical regions (posterior cingulate cortex and thalamus) and in a functional network (precuneus) after the start of the task. The effect size was quantified using Kendall's W value and was 0.3. The motor cortex was used as a control region for the task and did not show any significant BPND changes. There was a significant ΔBPND between acquisition conditions. On average, the reductions in binding across the regions were - 8.6 ± 3.2% in anatomical and - 6.4 ± 0.5% in the functional network (p ≤ 0.001). Correlations between ΔBPND and EEG latency for both anatomical (p = 0.008) and functional (p = 0.022) regions were found. Exploratory analyses suggest that the MMN task played a role in the glutamatergic neurotransmission, and mGluR5 may be indirectly modulated by these changes.
Collapse
|
2
|
Elucidating the glutamatergic processes underlying mismatch negativity deficits in early stage bipolar disorder and schizophrenia: A combined 1H-MRS and EEG study. J Psychiatr Res 2019; 113:83-89. [PMID: 30921632 DOI: 10.1016/j.jpsychires.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 02/01/2019] [Accepted: 03/20/2019] [Indexed: 01/31/2023]
Abstract
Impairments in mismatch negativity (MMN) in schizophrenia are well-established; these findings have been extended to show impairments at early illness stages and in bipolar disorder. A substantial literature supports MMN as an index of NMDA receptor output, however, few studies have conducted in vivo assessments to elucidate the neurochemical underpinnings of MMN. Sixty young (16-33 years) participants with bipolar disorder (n = 47) or schizophrenia (n = 13) underwent 1H-MRS and MMN assessment. Glutamate over creatine (Glu/Cr) levels in the anterior cingulate cortex (ACC) and hippocampus were determined and MMN was measured frontally and temporally. Correlational analyses assessed the relationship between MMN amplitudes and Glu/Cr. Any significant relationships were assessed for specificity with a follow up correlation analysis of MMN and n-acetyleaspartate (NAA/Cr). No associations between frontal or temporal MMN and ACC or hippocampal Glu/Cr were noted in the bipolar group. In the schizophrenia group, frontal and right temporal MMN amplitudes corresponded with increased ACC Glu/Cr at the trend-level. Right temporal MMN was similarly significantly associated with NAA/Cr. MMN was not associated with hippocampal Glu/Cr. This work provides in vivo evidence that glutamatergic processes may underlie MMN generation in early stage schizophrenia but not in early stage bipolar disorder suggesting differences in the MMN mechanism in these groups. The negative association between ACC Glu/Cr and MMN is consistent with findings of reduced MMN and increased in vivo glutamatergic neurometabolite levels in early stage schizophrenia. Furthermore, these results indicate that examining in vivo NAA/Cr may have provide additional insights into the MMN mechanism in schizophrenia.
Collapse
|
3
|
Bartolomeo LA, Wright AM, Ma RE, Hummer TA, Francis MM, Visco AC, Mehdiyoun NF, Bolbecker AR, Hetrick WP, Dydak U, Barnard J, O'Donnell BF, Breier A. Relationship of auditory electrophysiological responses to magnetic resonance spectroscopy metabolites in Early Phase Psychosis. Int J Psychophysiol 2019; 145:15-22. [PMID: 31129143 DOI: 10.1016/j.ijpsycho.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
Both auditory evoked responses and metabolites measured by magnetic resonance spectroscopy (MRS) are altered in schizophrenia and other psychotic disorders, but the relationship between electrophysiological and metabolic changes are not well characterized. We examined the relation of MRS metabolites to cognitive and electrophysiological measures in individuals during the early phase of psychosis (EPP) and in healthy control subjects. The mismatch negativity (MMN) of the auditory event-related potential to duration deviant tones and the auditory steady response (ASSR) to 40 Hz stimulation were assessed. MRS was used to quantify glutamate+glutamine (Glx), N-Acetylasparate (NAA), creatine (Cre), myo-inositol (Ins) and choline (Cho) at a voxel placed medially in the frontal cortex. MMN amplitude and ASSR power did not differ between groups. The MRS metabolites Glx, Cre and Cho were elevated in the psychosis group. Partial least squares analysis in the patient group indicated that elevated levels of MRS metabolites were associated with reduced MMN amplitude and increased 40 Hz ASSR power. There were no correlations between the neurobiological measures and clinical measures. These data suggest that elevated neurometabolites early in psychosis are accompanied by altered auditory neurotransmission, possibly indicative of a neuroinflammatory or excitotoxic disturbance which disrupts a wide range of metabolic processes in the cortex.
Collapse
Affiliation(s)
- Lisa A Bartolomeo
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America
| | - Andrew M Wright
- School of Health Sciences, Purdue University, Lafayette, IN, United States of America
| | - Ruoyun E Ma
- School of Health Sciences, Purdue University, Lafayette, IN, United States of America; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Tom A Hummer
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Michael M Francis
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Andrew C Visco
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Nicole F Mehdiyoun
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America
| | - William P Hetrick
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, Lafayette, IN, United States of America; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - John Barnard
- Section of Biostatistics, Cleveland Clinic, Cleveland, OH, United States of America
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America.
| | - Alan Breier
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
4
|
Rapado-Castro M, Dodd S, Bush AI, Malhi GS, Skvarc DR, On ZX, Berk M, Dean OM. Cognitive effects of adjunctive N-acetyl cysteine in psychosis. Psychol Med 2017; 47:866-876. [PMID: 27894373 DOI: 10.1017/s0033291716002932] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cognitive deficits are predictors of functional outcome in patients with psychosis. While conventional antipsychotics are relatively effective on positive symptoms, their impact on negative and cognitive symptoms is limited. Recent studies have established a link between oxidative stress and neurocognitive deficits in psychosis. N-acetylcysteine (NAC), a glutathione precursor with glutamatergic properties, has shown efficacy on negative symptoms and functioning in patients with schizophrenia and bipolar disorder, respectively. However, there are few evidence-based approaches for managing cognitive impairment in psychosis. The present study aims to examine the cognitive effects of adjunctive NAC treatment in a pooled subgroup of participants with psychosis who completed neuropsychological assessment in two trials of both schizophrenia and bipolar disorder. METHOD A sample of 58 participants were randomized in a double fashion to receive 2 g/day of NAC (n = 27) or placebo (n = 31) for 24 weeks. Attention, working memory and executive function domains were assessed. Differences between cognitive performance at baseline and end point were examined using Wilcoxon's test. The Mann-Whitney test was used to examine the differences between the NAC and placebo groups at the end point. RESULTS Participants treated with NAC had significantly higher working memory performance at week 24 compared with placebo (U = 98.5, p = 0.027). CONCLUSIONS NAC may have an impact on cognitive performance in psychosis, as a significant improvement in working memory was observed in the NAC-treated group compared with placebo; however, these preliminary data require replication. Glutamatergic compounds such as NAC may constitute a step towards the development of useful therapies for cognitive impairment in psychosis.
Collapse
Affiliation(s)
- M Rapado-Castro
- Child and Adolescent Psychiatry Department,Hospital General Universitario Gregorio Marañón,School of Medicine,Universidad Complutense,IiSGM,CIBERSAM,Madrid,Spain
| | - S Dodd
- Deakin University, IMPACT Strategic Research Centre, School of Medicine,Barwon Health,PO Box 291,Geelong,Victoria,Australia
| | - A I Bush
- Department of Psychiatry,University of Melbourne,Level 1 North,Main Block,Royal Melbourne Hospital,Parkville,Victoria,Australia
| | - G S Malhi
- Academic Department of Psychiatry,Kolling Institute,Northern Sydney Local Health District,St Leonards,NSW,Australia
| | - D R Skvarc
- Deakin University, IMPACT Strategic Research Centre, School of Medicine,Barwon Health,PO Box 291,Geelong,Victoria,Australia
| | - Z X On
- Melbourne School of Psychological Sciences,University of Melbourne,Level 12,Redmond Barry Building 115,Parkville,Victoria,Australia
| | - M Berk
- Orygen, The National Centre of Excellence in Youth Mental Health,Victoria,Australia
| | - O M Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine,Barwon Health,PO Box 291,Geelong,Victoria,Australia
| |
Collapse
|
5
|
Rydkjær J, Møllegaard Jepsen JR, Pagsberg AK, Fagerlund B, Glenthøj BY, Oranje B. Mismatch negativity and P3a amplitude in young adolescents with first-episode psychosis: a comparison with ADHD. Psychol Med 2017; 47:377-388. [PMID: 27776572 DOI: 10.1017/s0033291716002518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Deficient mismatch negativity (MMN) has been proposed as a candidate biomarker in schizophrenia and may therefore be potentially useful in early identification and intervention in early onset psychosis. In this study we explored whether deficits in the automatic orienting and reorienting responses, measured as MMN and P3a amplitude, are present in young adolescents with first-episode psychosis (FEP) and whether findings are specific to psychosis compared to young adolescents with attention deficit hyperactivity disorder (ADHD). METHOD MMN and P3a amplitude were assessed in young adolescents (age 12-17 years) with either FEP (N = 27) or ADHD (N = 28) and age- and gender-matched healthy controls (N = 43). The MMN paradigm consisted of a four-tone auditory oddball task with deviant stimuli based on frequency, duration and their combination. RESULTS Significantly less MMN was found in patients with psychosis compared to healthy controls in response to frequency and duration deviants. MMN amplitudes in the group of patients with ADHD were not significantly different from patients with psychosis or healthy controls. No significant group differences were found on P3a amplitude. CONCLUSION Young adolescents with FEP showed impaired MMN compared to healthy controls while intermediate and overlapping levels of MMN were observed in adolescents with ADHD. The findings suggest that young FEP patients already exhibit pre-attentive deficits that are characteristic of schizophrenia albeit expressed on a continuum shared with other neuropsychiatric disorders.
Collapse
Affiliation(s)
- J Rydkjær
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - J R Møllegaard Jepsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - A K Pagsberg
- Child and Adolescent Mental Health Center,Mental Health Services,Capital Region of Denmark,Copenhagen,Denmark
| | - B Fagerlund
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - B Y Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| | - B Oranje
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR),Mental Health Centre Glostrup,University of Copenhagen,Denmark
| |
Collapse
|
6
|
Treen D, Batlle S, Mollà L, Forcadell E, Chamorro J, Bulbena A, Perez V. Are there glutamate abnormalities in subjects at high risk mental state for psychosis? A review of the evidence. Schizophr Res 2016; 171:166-75. [PMID: 26803691 DOI: 10.1016/j.schres.2016.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/29/2015] [Accepted: 01/01/2016] [Indexed: 02/07/2023]
Abstract
New approaches to underlying alterations in psychosis suggest increasing evidence of glutamatergic abnormalities in schizophrenia and an association between these abnormalities and certain core psychopathological alterations such as cognitive impairment and negative symptoms. Proton magnetic resonance spectroscopy ((1)H MRS) is an MR-based technique that enables investigators to study glutamate function by measuring in vivo glutamatergic indices in the brain. In this article we review the published studies of (1)H MRS in subjects with an at-risk mental state (ARMS) for psychosis. The primary aim was to investigate whether alterations in glutamate function are present before the illness develops in order to expand our understanding of glutamatergic abnormalities in prodromal phases. Three databases were consulted for this review. Titles and abstracts were examined to determine if they fulfilled the inclusion criteria. The reference lists of the included studies were also examined to identify additional trials. Eleven final studies were included in this review. Significant alterations in glutamate metabolites across different cerebral areas (frontal lobe, thalamus, and the associative striatum) in subjects with an ARMS for psychosis are reported in six of the trials. A longitudinal analysis in two of these trials confirmed an association between these abnormalities and worsening of symptoms and final transition to psychosis. Considering that five other studies found no significant differences across these same areas, we can conclude that more research is needed to confirm glutamatergic abnormalities in subjects with an ARMS for psychosis. However, future research must overcome the methodological limitations of existing studies to obtain reliable results.
Collapse
Affiliation(s)
- Devi Treen
- Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain
| | - Santiago Batlle
- Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain
| | - Laia Mollà
- Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain
| | - Eduard Forcadell
- Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain
| | - Jacobo Chamorro
- Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain
| | - Antonio Bulbena
- Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Autonomous University of Barcelona UAB, Department of Psychiatry and Forensic Medicine, Bellaterra, Spain
| | - Victor Perez
- Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Autonomous University of Barcelona UAB, Department of Psychiatry and Forensic Medicine, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| |
Collapse
|
7
|
Chitty KM, Lagopoulos J, Hickie IB, Hermens DF. Hippocampal glutamatergic/NMDA receptor functioning in bipolar disorder: A study combining mismatch negativity and proton magnetic resonance spectroscopy. Psychiatry Res 2015; 233:88-94. [PMID: 26070970 DOI: 10.1016/j.pscychresns.2015.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 03/12/2015] [Accepted: 05/01/2015] [Indexed: 12/25/2022]
Abstract
Disturbances in the hippocampal glutamate (Glu)/N-methyl-d-aspartate (NMDA) system have been implicated in the pathophysiology of bipolar disorder (BD). Here we aim to provide a targeted integration of two measures of glutamatergic functioning in BD; the association between mismatch negativity (MMN) and in vivo hippocampal-Glu measured via proton magnetic resonance spectroscopy ((1)H MRS). Participants comprised of 33 patients with BD and 23 matched controls who underwent a two-tone passive, duration deviant MMN paradigm and (1)H MRS. Levels of Glu/creatine (Cr) in the hippocampus were determined. Pearson's correlations were used to determine associations between MMN and Glu/Cr. In controls, MMN amplitude was positively associated with Glu/Cr at the left temporal site. We did not find any significant associations with Glu/Cr and frontocentral MMN nor did we find any significant associations in BD patients. The results provide further insight into the neurophysiology of MMN, with evidence supporting the role of hippocampal-Glu signalling through the NMDA receptor in temporal MMN. Our data also demonstrate that Glu/Cr regulation of MMN is dampened in BD, which may indicate a lack of tightly regulated hippocampal NMDA functioning. These findings provide insight into the underlying basis of glutamatergic transmission disturbances implicated in the disorder.
Collapse
Affiliation(s)
- Kate M Chitty
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Sydney, Australia.
| | - Jim Lagopoulos
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Sydney, Australia
| | - Ian B Hickie
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Sydney, Australia
| | - Daniel F Hermens
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
8
|
The role of the thalamus in schizophrenia from a neuroimaging perspective. Neurosci Biobehav Rev 2015; 54:57-75. [DOI: 10.1016/j.neubiorev.2015.01.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
|
9
|
Chitty KM, Lagopoulos J, Hickie IB, Hermens DF. Investigating the role of glutathione in mismatch negativity: An insight into NMDA receptor disturbances in bipolar disorder. Clin Neurophysiol 2015; 126:1178-1184. [DOI: 10.1016/j.clinph.2014.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 11/28/2022]
|
10
|
Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset. Int J Psychophysiol 2015; 95:338-44. [PMID: 25562834 DOI: 10.1016/j.ijpsycho.2014.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/14/2014] [Accepted: 12/26/2014] [Indexed: 11/24/2022]
Abstract
Currently, the mismatch negativity (MMN) deficit is one of the most robust and replicable findings in schizophrenia, reflecting cognitive and functional decline, psychosocial and socio-occupational impairment, and executive dysfunction in these patients. An important break-through has very recently taken place here in the prediction of conversion to psychosis when the MMN in particular to change in tone duration was recorded in clinically at risk-mental state (ARMS) individuals. Attenuations in the MMN in these patients may be very useful in helping clinicians determine who are most likely to develop a psychotic disorder, as we will review in the present article.
Collapse
|
11
|
Egerton A, Stone JM, Chaddock CA, Barker GJ, Bonoldi I, Howard RM, Merritt K, Allen P, Howes OD, Murray RM, McLean MA, Lythgoe DJ, O'Gorman RL, McGuire PK. Relationship between brain glutamate levels and clinical outcome in individuals at ultra high risk of psychosis. Neuropsychopharmacology 2014; 39:2891-9. [PMID: 24917199 PMCID: PMC4180719 DOI: 10.1038/npp.2014.143] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 12/31/2022]
Abstract
Alterations in brain glutamate levels may be associated with psychosis risk, but the relationship to clinical outcome in at-risk individuals is unknown. Glutamate concentration was measured in the left thalamus and anterior cingulate cortex (ACC) using 3-Tesla proton magnetic resonance spectroscopy in 75 participants at ultra high risk (UHR) of psychosis and 56 healthy controls. The severity of attenuated positive symptoms and overall functioning were assessed. Measures were repeated in 51 UHR and 33 Control subjects after a mean of 18 months. UHR subjects were allocated to either remission (no longer meeting UHR criteria) or non-remission (meeting UHR or psychosis criteria) status on follow-up assessment. Thalamic glutamate levels at presentation were lower in the UHR non-remission (N=29) compared with the remission group (N=22) (t(49)=3.03; P=0.004), and were associated with an increase in the severity of total positive symptoms over time (r=-0.33; df=47; P=0.02), most notably abnormal thought content (r=-0.442; df=47; P=0.003). In the UHR group, ACC glutamate levels were lower at follow-up compared with baseline (F(80)=4.28; P=0.04). These findings suggest that measures of brain glutamate function may be useful as predictors of clinical outcome in individuals at high risk of psychosis.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK,Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK, Tel: +44 (0) 207 848 0879, Fax: +44 (0) 207 848 0976, E-mail:
| | - James M Stone
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Christopher A Chaddock
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Rachel M Howard
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Kate Merritt
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - David J Lythgoe
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Ruth L O'Gorman
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK,MR-Center, University Children's Hospital, Zurich, Switzerland
| | - Philip K McGuire
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| |
Collapse
|
12
|
Dandash O, Fornito A, Lee J, Keefe RSE, Chee MWL, Adcock RA, Pantelis C, Wood SJ, Harrison BJ. Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis. Schizophr Bull 2014; 40:904-13. [PMID: 23861539 PMCID: PMC4059431 DOI: 10.1093/schbul/sbt093] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recent functional imaging work in individuals experiencing an at-risk mental state (ARMS) for psychosis has implicated dorsal striatal abnormalities in the emergence of psychotic symptoms, contrasting with earlier findings implicating the ventral striatum. Our aims here were to characterize putative dorsal and ventral striatal circuit-level abnormalities in ARMS individuals using resting-state functional magnetic resonance imaging (fMRI) and to investigate their relationship to positive psychotic symptoms. Resting-state fMRI was acquired in 74 ARMS subjects and 35 matched healthy controls. An established method for mapping ventral and dorsal striatal functional connectivity was used to examine corticostriatal functional integrity. Positive psychotic symptoms were assessed using the Comprehensive Assessment of At-Risk Mental State and the Positive and Negative Syndrome Scale. Compared with healthy controls, ARMS subjects showed reductions in functional connectivity between the dorsal caudate and right dorsolateral prefrontal cortex, left rostral medial prefrontal cortex, and thalamus, and between the dorsal putamen and left thalamic and lenticular nuclei. ARMS subjects also showed increased functional connectivity between the ventral putamen and the insula, frontal operculum, and superior temporal gyrus bilaterally. No differences in ventral striatal (ie, nucleus accumbens) functional connectivity were found. Altered functional connectivity in corticostriatal circuits were significantly correlated with positive psychotic symptoms. Together, these results suggest that risk for psychosis is mediated by a complex interplay of alterations in both dorsal and ventral corticostriatal systems.
Collapse
Affiliation(s)
- Orwa Dandash
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | | | - Jimmy Lee
- Department of General Psychiatry 1 and Research Division, Institute of Mental Health, Buangkok, Singapore;,Office of Clinical Sciences, Graduate Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Richard S. E. Keefe
- Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC;,Neuroscience and Behavioral Disorders Program, Graduate Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Michael W. L. Chee
- Neuroscience and Behavioral Disorders Program, Graduate Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - R. Alison Adcock
- Department of Psychiatry and Behavioral Sciences and Center for Cognitive Neuroscience, Duke University, Durham, NC
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia;,Melbourne Health, Melbourne, Australia
| | - Stephen J. Wood
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia;,School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK,*To whom correspondence should be addressed; School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; tel: 44 121 414 4917, fax: 44 121 414 4897, e-mail:
| | - Ben J. Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Stone JM, Pepper F, Fam J, Furby H, Hughes E, Morgan C, Howes OD. Glutamate, N-acetyl aspartate and psychotic symptoms in chronic ketamine users. Psychopharmacology (Berl) 2014; 231:2107-16. [PMID: 24264567 DOI: 10.1007/s00213-013-3354-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 11/04/2013] [Indexed: 01/21/2023]
Abstract
RATIONALE Ketamine, a non-competitive NMDA receptor antagonist, induces acute effects resembling the positive, negative and cognitive symptoms of schizophrenia. Chronic use has been suggested to lead to persistent schizophrenia-like neurobiological changes. OBJECTIVES This study aims to test the hypothesis that chronic ketamine users have changes in brain neurochemistry and increased subthreshold psychotic symptoms compared to matched poly-drug users. METHODS Fifteen ketamine users and 13 poly-drug users were included in the study. Psychopathology was assessed using the Comprehensive Assessment of At-Risk Mental State. Creatine-scaled glutamate (Glu/Cr), glutamate + glutamine (Glu + Gln/Cr) and N-acetyl aspartate (NAA/Cr) were measured in three brain regions-anterior cingulate, left thalamus and left medial temporal cortex using proton magnetic resonance spectroscopy. RESULTS Chronic ketamine users had higher levels of subthreshold psychotic symptoms (p < 0.005, Cohen's d = 1.48) and lower thalamic NAA/Cr (p < 0.01, d = 1.17) compared to non-users. There were no differences in medial temporal cortex or anterior cingulate NAA/Cr or in Glu/Cr or Glu + Gln/Cr in any brain region between the two groups. In chronic ketamine users, CAARMS severity of abnormal perceptions was directly correlated with anterior cingulate Glu/Cr (p < 0.05, r = 0.61-uncorrected), but NAA/Cr was not related to any measures of psychopathology. CONCLUSIONS The finding of lower thalamic NAA/Cr in chronic ketamine users may be secondary to the effects of ketamine use compared to other drugs of abuse and resembles previous reports in individuals at genetic or clinical risk of schizophrenia.
Collapse
Affiliation(s)
- James M Stone
- Department of Experimental Medicine, Imperial College London, London, UK,
| | | | | | | | | | | | | |
Collapse
|
14
|
Greenwood LM, Broyd SJ, Croft R, Todd J, Michie PT, Johnstone S, Murray R, Solowij N. Chronic effects of cannabis use on the auditory mismatch negativity. Biol Psychiatry 2014; 75:449-58. [PMID: 23830666 DOI: 10.1016/j.biopsych.2013.05.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 05/26/2013] [Accepted: 05/30/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cannabis use is associated with the development of psychotic symptoms and increased risk for schizophrenia. The mismatch negativity (MMN) is a brain event-related potential marker of change detection thought to index glutamatergic N-methyl-D-aspartate receptor-mediated neurotransmission, which is known to be deficient in schizophrenia. This study examined auditory MMN in otherwise healthy chronic cannabis users compared with nonuser control subjects. METHODS Forty-two chronic cannabis users and 44 nonuser healthy control subjects completed a multi-feature MMN paradigm, which included duration, frequency, and intensity deviants (deviants 6%; standards 82%). The MMN was compared between users and control subjects as well as between long- and short-term users and age- and gender-matched control subjects. Associations between MMN, cannabis use measures, and symptoms were examined. RESULTS The MMN amplitude was significantly reduced to frequency but not duration or intensity deviants in overall cannabis users relative to control subjects. Frequency MMN was similarly attenuated in short- and long-term users relative to control subjects. Long-term users also exhibited reduced duration MMN relative to control subjects and short-term users and this was correlated with increased duration of exposure to cannabis and increased psychotic-like experiences during intoxication. In short-term users, a younger age of onset of regular cannabis use and greater frequency of use were associated with greater psychotic-like experiences and symptomatic distress. CONCLUSIONS These results suggest impaired sensory memory that might reflect N-methyl-D-aspartate receptor dysfunction in chronic cannabis users. The pattern of MMN alterations in cannabis users differed from that typically observed in patients with schizophrenia, indicating overlapping but distinct underlying pathology.
Collapse
Affiliation(s)
- Lisa-Marie Greenwood
- School of Psychology and ψ-P3: Centre for Psychophysics, Psychophysiology and Psychopharmacology, University of Wollongong, Wollongong
| | - Samantha J Broyd
- School of Psychology and ψ-P3: Centre for Psychophysics, Psychophysiology and Psychopharmacology, University of Wollongong, Wollongong
| | - Rodney Croft
- School of Psychology and ψ-P3: Centre for Psychophysics, Psychophysiology and Psychopharmacology, University of Wollongong, Wollongong
| | - Juanita Todd
- School of Psychology and Priority Research Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Patricia T Michie
- School of Psychology and Priority Research Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Stuart Johnstone
- School of Psychology and ψ-P3: Centre for Psychophysics, Psychophysiology and Psychopharmacology, University of Wollongong, Wollongong
| | - Robin Murray
- Institute of Psychiatry, Kings College, London, United Kingdom
| | - Nadia Solowij
- School of Psychology and ψ-P3: Centre for Psychophysics, Psychophysiology and Psychopharmacology, University of Wollongong, Wollongong; Schizophrenia Research Institute, Sydney, New South Wales, Australia.
| |
Collapse
|
15
|
Bodatsch M, Klosterkötter J, Daumann J. Contributions of experimental psychiatry to research on the psychosis prodrome. Front Psychiatry 2013; 4:170. [PMID: 24381564 PMCID: PMC3865446 DOI: 10.3389/fpsyt.2013.00170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/04/2013] [Indexed: 11/13/2022] Open
Abstract
In the recent decades, a paradigmatic change in psychosis research and treatment shifted attention toward the early and particularly the prodromal stages of illness. Despite substantial progress with regard to the neuronal underpinnings of psychosis development, the crucial biological mechanisms leading to manifest illness are yet insufficiently understood. Until today, one significant approach to elucidate the neurobiology of psychosis has been the modeling of psychotic symptoms by psychedelic substances in healthy individuals. These models bear the opportunity to evoke particular neuronal aberrations and the respective psychotic symptoms in a controlled experimental setting. In the present paper, we hypothesize that experimental psychiatry bears unique opportunities in elucidating the biological mechanisms of the prodromal stages of psychosis. Psychosis risk symptoms are attenuated, transient, and often only retrospectively reported. The respective neuronal aberrations are thought being dynamic. The correlation of unstable psychopathology with observed neurofunctional disturbances is thus yet largely unclear. In modeling psychosis, the experimental setting allows not only for evoking particular symptoms, but for the concomitant assessment of psychopathology, neurophysiology, and neuropsychology. Herein, the glutamatergic model will be highlighted exemplarily, with special emphasis on its potential contribution to the elucidation of psychosis development. This model of psychosis appears as candidate for modeling the prodrome by inducing psychotic-like symptoms in healthy individuals. Furthermore, it alters pre-attentive processing like the Mismatch Negativity, an electrophysiological component which has recently been identified as a potential predictive marker of psychosis development. In summary, experimental psychiatry bears the potential to further elucidate the biological mechanisms of the psychosis prodrome. A better understanding of the respective pathophysiology might assist in the identification of predictive markers, and the development of preventive treatments.
Collapse
Affiliation(s)
- Mitja Bodatsch
- Department of Psychiatry and Psychotherapy, University of Cologne , Cologne , Germany
| | - Joachim Klosterkötter
- Department of Psychiatry and Psychotherapy, University of Cologne , Cologne , Germany
| | - Jörg Daumann
- Department of Psychiatry and Psychotherapy, University of Cologne , Cologne , Germany
| |
Collapse
|
16
|
Mismatch negativity (MMN) and sensory auditory processing in children aged 9-12 years presenting with putative antecedents of schizophrenia. Int J Psychophysiol 2013; 89:374-80. [PMID: 23707338 PMCID: PMC3807658 DOI: 10.1016/j.ijpsycho.2013.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 11/21/2022]
Abstract
Identification of markers of abnormal brain function in children at-risk of schizophrenia may inform early intervention and prevention programs. Individuals with schizophrenia are characterised by attenuation of MMN amplitude, which indexes automatic auditory sensory processing. The current aim was to examine whether children who may be at increased risk of schizophrenia due to their presenting multiple putative antecedents of schizophrenia (ASz) are similarly characterised by MMN amplitude reductions, relative to typically developing (TD) children. EEG was recorded from 22 ASz and 24 TD children aged 9 to 12 years (matched on age, sex, and IQ) during a passive auditory oddball task (15% duration deviant). ASz children were those presenting: (1) speech and/or motor development lags/problems; (2) social, emotional, or behavioural problems in the clinical range; and (3) psychotic-like experiences. TD children presented no antecedents, and had no family history of a schizophrenia spectrum disorder. MMN amplitude, but not latency, was significantly greater at frontal sites in the ASz group than in the TD group. Although the MMN exhibited by the children at risk of schizophrenia was unlike that of their typically developing peers, it also differed from the reduced MMN amplitude observed in adults with schizophrenia. This may reflect developmental and disease effects in a pre-prodromal phase of psychosis onset. Longitudinal follow-up is necessary to establish the developmental trajectory of MMN in at-risk children.
Collapse
|
17
|
Wood SJ, Reniers RLEP, Heinze K. Neuroimaging findings in the at-risk mental state: a review of recent literature. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2013; 58:13-8. [PMID: 23327751 DOI: 10.1177/070674371305800104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The at-risk mental state (ARMS) has been the subject of much interest during the past 15 years. A great deal of effort has been expended to identify neuroimaging markers that can inform our understanding of the risk state and to help predict who will transition to frank psychotic illness. Recently, there has been an explosion of neuroimaging literature from people with an ARMS, which has meant that reviews and meta-analyses lack currency. Here we review papers published in the past 2 years, and contrast their findings with previous reports. While it is clear that people in the ARMS do show brain alterations when compared with healthy control subjects, there is an overall lack of consistency as to which of these alterations predict the development of psychosis. This problem arises because of variations in methodology (in patient recruitment, region of interest, method of analysis, and functional task employed), but there has also been too little effort put into replicating previous research. Nonetheless, there are areas of promise, notably that activation of the stress system and increased striatal dopamine synthesis seem to mark out patients in the ARMS most at risk for later transition. Future studies should focus on these areas, and on network-level analysis, incorporating graph theoretical approaches and intrinsic connectivity networks.
Collapse
Affiliation(s)
- Stephen J Wood
- Professor of Adolescent Brain Development and Mental Health, School of Psychology, University of Birmingham, Edgbaston, England.
| | | | | |
Collapse
|
18
|
The mismatch negativity (MMN)--a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 2011; 123:424-58. [PMID: 22169062 DOI: 10.1016/j.clinph.2011.09.020] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/14/2022]
Abstract
In this article, we review clinical research using the mismatch negativity (MMN), a change-detection response of the brain elicited even in the absence of attention or behavioural task. In these studies, the MMN was usually elicited by employing occasional frequency, duration or speech-sound changes in repetitive background stimulation while the patient was reading or watching videos. It was found that in a large number of different neuropsychiatric, neurological and neurodevelopmental disorders, as well as in normal ageing, the MMN amplitude was attenuated and peak latency prolonged. Besides indexing decreased discrimination accuracy, these effects may also reflect, depending on the specific stimulus paradigm used, decreased sensory-memory duration, abnormal perception or attention control or, most importantly, cognitive decline. In fact, MMN deficiency appears to index cognitive decline irrespective of the specific symptomatologies and aetiologies of the different disorders involved.
Collapse
|
19
|
Egerton A, Borgwardt SJ, Tognin S, Howes OD, McGuire P, Allen P. An overview of functional, structural and neurochemical imaging studies in individuals with a clinical high risk for psychosis. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/npy.11.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Adhesio interthalamica alterations in schizophrenia spectrum disorders: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:877-86. [PMID: 21300129 DOI: 10.1016/j.pnpbp.2010.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/10/2010] [Accepted: 12/31/2010] [Indexed: 11/23/2022]
Abstract
Magnetic resonance imaging (MRI) studies have reported a variety of brain abnormalities in association with schizophrenia. These include a higher prevalence of an absent adhesio interthalamica (AI; also known massa intermedia), a gray matter junction that is present between the two thalami in approximately 80% of healthy subjects. In this meta-analytic review, we describe and discuss the main AI MRI findings in schizophrenia spectrum disorders (SSDs) to date. The MEDLINE and ISI Web of Knowledge databases were searched up to December 2010, for studies that used MRI to assess AI in patients with SSD and controls. From fourteen potential reports, eleven were eligible to be part of the current review. These studies included 822 patients with SSD and 718 healthy volunteers. There was a large degree of variability in the MRI methods they employed. Patients with SSD had a higher prevalence of absent AI than healthy volunteers (odds ratio = 1.98; 95% confidence interval 1.33-2.94; p = 0.0008). This association was evident in both male and female SSD subjects, and there was no evidence that the prevalence was related to age or duration of illness. The significance of the absence of an AI for SSD may be clarified by studies in large, longitudinal community-based samples using standardized methods.
Collapse
|
21
|
Prediction of psychosis by mismatch negativity. Biol Psychiatry 2011; 69:959-66. [PMID: 21167475 DOI: 10.1016/j.biopsych.2010.09.057] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/10/2010] [Accepted: 09/28/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND To develop risk-adapted prevention of psychosis, an accurate estimation of the individual risk of psychosis at a given time is needed. Inclusion of biological parameters into multilevel prediction models is thought to improve predictive accuracy of models on the basis of clinical variables. To this aim, mismatch negativity (MMN) was investigated in a sample clinically at high risk, comparing individuals with and without subsequent conversion to psychosis. METHODS At baseline, an auditory oddball paradigm was used in 62 subjects meeting criteria of a late risk at-state who remained antipsychotic-naive throughout the study. Median follow-up period was 32 months (minimum of 24 months in nonconverters, n = 37). Repeated-measures analysis of covariance was employed to analyze the MMN recorded at frontocentral electrodes; additional comparisons with healthy controls (HC, n = 67) and first-episode schizophrenia patients (FES, n = 33) were performed. Predictive value was evaluated by a Cox regression model. RESULTS Compared with nonconverters, duration MMN in converters (n = 25) showed significantly reduced amplitudes across the six frontocentral electrodes; the same applied in comparison with HC, but not FES, whereas the duration MMN in in nonconverters was comparable to HC and larger than in FES. A prognostic score was calculated based on a Cox regression model and stratified into two risk classes, which showed significantly different survival curves. CONCLUSIONS Our findings demonstrate the duration MMN is significantly reduced in at-risk subjects converting to first-episode psychosis compared with nonconverters and may contribute not only to the prediction of conversion but also to a more individualized risk estimation and thus risk-adapted prevention.
Collapse
|