1
|
Han Y, Yan H, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Enhanced interhemispheric resting-state functional connectivity of the visual network is an early treatment response of paroxetine in patients with panic disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:497-506. [PMID: 37253876 PMCID: PMC10228425 DOI: 10.1007/s00406-023-01627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
This study aimed to detect alterations in interhemispheric interactions in patients with panic disorder (PD), determine whether such alterations could serve as biomarkers for the diagnosis and prediction of therapeutic outcomes, and map dynamic changes in interhemispheric interactions in patients with PD after treatment. Fifty-four patients with PD and 54 healthy controls (HCs) were enrolled in this study. All participants underwent clinical assessment and a resting-state functional magnetic resonance imaging scan at (i) baseline and (ii) after paroxetine treatment for 4 weeks. A voxel-mirrored homotopic connectivity (VMHC) indicator, support vector machine (SVM), and support vector regression (SVR) were used in this study. Patients with PD showed reduced VMHC in the fusiform, middle temporal/occipital, and postcentral/precentral gyri, relative to those of HCs. After treatment, the patients exhibited enhanced VMHC in the lingual gyrus, relative to the baseline data. The VMHC of the fusiform and postcentral/precentral gyri contributed most to the classification (accuracy = 87.04%). The predicted changes were accessed from the SVR using the aberrant VMHC as features. Positive correlations (p < 0.001) were indicated between the actual and predicted changes in the severity of anxiety. These findings suggest that impaired interhemispheric coordination in the cognitive-sensory network characterized PD and that VMHC can serve as biomarkers and predictors of the efficiency of PD treatment. Enhanced VMHC in the lingual gyrus of patients with PD after treatment implied that pharmacotherapy recruited the visual network in the early stages.
Collapse
Affiliation(s)
- Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Chen Y, Jia L, Gao W, Wu C, Mu Q, Fang Z, Hu S, Huang M, Zhang P, Lu S. Alterations of brainstem volume in patients with first-episode and recurrent major depressive disorder. BMC Psychiatry 2023; 23:687. [PMID: 37735630 PMCID: PMC10512480 DOI: 10.1186/s12888-023-05146-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a prevalent mental health condition characterized by recurrent episodes in a substantial proportion of patients. The number of previous episodes is one of the most crucial predictors of depression recurrence. However, the underlying neural mechanisms remain unclear. To date, there have been limited neuroimaging studies investigating morphological changes of the brainstem in patients with first-episode MDD (FMDD) and recurrent MDD (RMDD). This study aimed to examine volumetric changes of individual brainstem regions in relation to the number of previous episodes and disease duration. METHOD A total of 111 individuals including 36 FMDD, 25 RMDD, and 50 healthy controls (HCs) underwent T1-weighted structural magnetic resonance imaging scans. A Bayesian segmentation algorithm was used to analyze the volume of each brainstem region, including the medulla oblongata, pons, midbrain, and superior cerebellar peduncle (SCP), as well as the whole brainstem volume. Analyses of variance (ANOVA) were performed to obtain brain regions with significant differences among three groups and then post hoc tests were calculated for inter-group comparisons. Partial correlation analyses were further conducted to identify associations between regional volumes and clinical features. RESULTS The ANOVA revealed significant brainstem volumetric differences among three groups in the pons, midbrain, SCP, and the whole brainstem (F = 3.996 ~ 5.886, adjusted p = 0.015 ~ 0.028). As compared with HCs, both groups of MDD patients showed decreased volumes in the pons as well as the entire brainstem (p = 0.002 ~ 0.034), however, only the FMDD group demonstrated a significantly reduced volume in the midbrain (p = 0.003). Specifically, the RMDD group exhibited significantly decreased SCP volume when comparing to both FMDD (p = 0.021) group and HCs (p = 0.008). Correlation analyses revealed that the SCP volumes were negatively associated with the number of depressive episodes (r=-0.36, p < 0.01) and illness duration (r=-0.28, p = 0.035) in patients with MDD. CONCLUSION The present findings provided evidence of decreased brainstem volume involving in the pathophysiology of MDD, particularly, volumetric reduction in the SCP might represent a neurobiological marker for RMDD. Further research is needed to confirm our observations and deepen our understanding of the neural mechanisms underlying depression recurrence.
Collapse
Affiliation(s)
- Yue Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Jia
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Clinical Psychology, The Fifth Peoples' Hospital of Lin'an District, Hangzhou, Zhejiang, China
| | - Weijia Gao
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingli Mu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhe Fang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Peng Zhang
- Department of Psychiatry, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728 North Yucai Road, Hangzhou, Zhejiang, 311200, China.
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
3
|
Yoshida H, Asami T, Takaishi M, Nakamura R, Yoshimi A, Whitford TJ, Hirayasu Y. Structural abnormalities in nucleus accumbens in patients with panic disorder. J Affect Disord 2020; 271:201-206. [PMID: 32479317 DOI: 10.1016/j.jad.2020.03.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/25/2020] [Accepted: 03/29/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although the pathogenesis of panic attacks has been well studied in patients with panic disorder (PD), the neurobiological basis of the long-term fear memories and avoidance behavior that are often observed in PD have not been well investigated. Recent animal studies have suggested that nucleus accumbens (NAcc) plays an important role in neurobiological basis of long-term fear memories and avoidance behavior. METHODS Thirty-eight patients with PD and 38 matched healthy control subjects (HC) participated in this study. Differences in relative volumes and shape deformations of NAcc were evaluated between groups. Correlation analyses were conducted to quantify the association between structural abnormalities in the NAcc and trait, state anxiety measured by the State-Trait Anxiety Inventory (STAI). RESULTS Significant volume reductions were observed in the bilateral NAcc in the patients with PD, relative to the HC. In terms of shape differences, the PD patients demonstrated significant inward deformation of the NAcc bilaterally, compared to the HC. Degree of shape deformation in the right NAcc was associated with higher scores of the STAI-Trait, and STAI-State measures in the PD patients. LIMITATIONS All the patients received medication such as Psychotropic drug. CONCLUSION Patients with PD showed reduced volumes in the NAcc, especially in lateral regions, compared with HC. Furthermore, shape deformation in the right NAcc was associated with trait anxiety and state anxiety, which has been associated with avoidance behavior.
Collapse
Affiliation(s)
- Haruhisa Yoshida
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takeshi Asami
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.
| | - Masao Takaishi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryota Nakamura
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Asuka Yoshimi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Thomas J Whitford
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan; Heian Hospital, Okinawa, Japan
| |
Collapse
|
4
|
Hu X, Zhang L, Hu X, Lu L, Tang S, Li H, Bu X, Gong Q, Huang X. Abnormal Hippocampal Subfields May Be Potential Predictors of Worse Early Response to Antidepressant Treatment in Drug‐Naïve Patients With Major Depressive Disorder. J Magn Reson Imaging 2018; 49:1760-1768. [PMID: 30295348 DOI: 10.1002/jmri.26520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiaoxiao Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Shi Tang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Xuan Bu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, P.R. China
| |
Collapse
|
5
|
Rive MM, Redlich R, Schmaal L, Marquand AF, Dannlowski U, Grotegerd D, Veltman DJ, Schene AH, Ruhé HG. Distinguishing medication-free subjects with unipolar disorder from subjects with bipolar disorder: state matters. Bipolar Disord 2016; 18:612-623. [PMID: 27870505 DOI: 10.1111/bdi.12446] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/01/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Recent studies have indicated that pattern recognition techniques of functional magnetic resonance imaging (fMRI) data for individual classification may be valuable for distinguishing between major depressive disorder (MDD) and bipolar disorder (BD). Importantly, medication may have affected previous classification results as subjects with MDD and BD use different classes of medication. Furthermore, almost all studies have investigated only depressed subjects. Therefore, we focused on medication-free subjects. We additionally investigated whether classification would be mood state independent by including depressed and remitted subjects alike. METHODS We applied Gaussian process classifiers to investigate the discriminatory power of structural MRI (gray matter volumes of emotion regulation areas) and resting-state fMRI (resting-state networks implicated in mood disorders: default mode network [DMN], salience network [SN], and lateralized frontoparietal networks [FPNs]) in depressed (n=42) and remitted (n=49) medication-free subjects with MDD and BD. RESULTS Depressed subjects with MDD and BD could be classified based on the gray matter volumes of emotion regulation areas as well as DMN functional connectivity with 69.1% prediction accuracy. Prediction accuracy using the FPNs and SN did not exceed chance level. It was not possible to discriminate between remitted subjects with MDD and BD. CONCLUSIONS For the first time, we showed that medication-free subjects with MDD and BD can be differentiated based on structural MRI as well as resting-state functional connectivity. Importantly, the results indicated that research concerning diagnostic neuroimaging tools distinguishing between MDD and BD should consider mood state as only depressed subjects with MDD and BD could be correctly classified. Future studies, in larger samples are needed to investigate whether the results can be generalized to medication-naïve or first-episode subjects.
Collapse
Affiliation(s)
- Maria M Rive
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Lianne Schmaal
- Department of Psychiatry and Neuroscience, Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - André F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Aart H Schene
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henricus G Ruhé
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Psychiatry, Mood and Anxiety Disorders, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Porcu M, Balestrieri A, Siotto P, Lucatelli P, Anzidei M, Suri JS, Zaccagna F, Argiolas GM, Saba L. Clinical neuroimaging markers of response to treatment in mood disorders. Neurosci Lett 2016; 669:43-54. [PMID: 27737806 DOI: 10.1016/j.neulet.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Mood disorders (MD) are important and frequent psychiatric illness. The management of patients affected by these conditions represents an important factor of disability as well as a significant social and economic burden. The "in-vivo" studies can help researchers to understand the first developmental events of the pathology and to identify the molecular and non-molecular targets of therapies. However, they have strong limitations due to the fact that human brain circuitry can not be reproduced in animal models. In addition, these neural pathways are difficult to be selectively studied with the modern imaging (such as Magnetic Resonance and Positron Emitted Tomography/Computed Tomography) and non-imaging (such as electroencephalography, magnetoencephalography, transcranial magnetic stimulation and evoked potentials) methods. In comparison with other methods, the "in-vivo" imaging investigations have higher temporal and spatial resolution compared to the "in-vivo" non-imaging techniques. All these factors make difficult to fully understand the aetiology and pathophysiology of these disorders, and consequently hinder the analysis of the effects of pharmacological and non-pharmacological therapies, which have been demonstrated effective in clinical settings. In this review, we will focus our attention on the current state of the art of imaging in the assessment of treatment efficacy in MD. We will analyse briefly the actual classification of MD; then we will focus on the "in vivo" imaging methods used in research and clinical activity, the current knowledge about the neural models at the base of MD. Finally the last part of the review will focus on the analysis of the main markers of response to treatment.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy
| | | | - Paolo Siotto
- Department of Radiology, AOB Azienda Ospedaliera Brotzu, CA, Italy
| | - Pierleone Lucatelli
- Vascular and Interventional Radiology Unit, Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Michele Anzidei
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Jasjit S Suri
- Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA; Electrical Engineering Department, Idaho State University (Aff.), Pocatello, ID, USA
| | - Fulvio Zaccagna
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | | | - Luca Saba
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy.
| |
Collapse
|
7
|
Lai CH, Wu YT, Chen CY, Hou YC. Gray matter increases in fronto-parietal regions of depression patients with aripiprazole monotherapy: An exploratory study. Medicine (Baltimore) 2016; 95:e4654. [PMID: 27559967 PMCID: PMC5400334 DOI: 10.1097/md.0000000000004654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We investigated the treatment effects of aripiprazole monotherapy in first-episode medication-naïve patients with major depressive disorder (MDD). The accompanying changes in the gray matter volume (GMV) were also explored.Fifteen patients completed the trial and received structural scans by 3-Tesla magnetic resonance imaging at baseline and partially responding state (sixth week). To account for the test-retest bias, 27 healthy controls were scanned twice within 6 weeks. We utilized optimized voxel-based morphometry with different comparisons between groups.The partially responding patients with MDD had greater GMV in left middle frontal gyrus and left superior parietal gyrus when compared with baseline. However, they had decreases in the GMV of right orbitofrontal gyrus and right inferior temporal gyrus after response. The partially responding patients with MDD still had residual GMV deficits in right superior frontal gyrus when compared with controls. However, the lack of second patient group without aripiprazole intervention would be a significant limitation to interpret the aripiprazole-specific effects on GMV.The changes in the GMV of fronto-parieto-temporal regions and residual GMV deficits in the superior frontal gyrus might represent "state-dependent brain changes" and "residual-deficit brain regions," respectively, for aripiprzole monotherapy in MDD.
Collapse
Affiliation(s)
- Chien-Han Lai
- Department of Psychiatry, Chung Shan Hospital
- Department of Biomedical Imaging and Radiological Sciences
- Institute of Biophotonics
| | - Yu-Te Wu
- Department of Biomedical Imaging and Radiological Sciences
- Institute of Biophotonics
- Brain Research Center, National Yang-Ming University, Taipei
- Correspondence: Yu-Te Wu, Institute of Biophotonics, National Yang Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112 Taiwan, Taiwan, ROC. (e-mail: )
| | - Cheng-Yu Chen
- Department of Family Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
| | - Yi-Cheng Hou
- Department of Nutrition, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
8
|
Antidepressant-Like Effects of Fractions Prepared from Danzhi-Xiaoyao-San Decoction in Rats with Chronic Unpredictable Mild Stress: Effects on Hypothalamic-Pituitary-Adrenal Axis, Arginine Vasopressin, and Neurotransmitters. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6784689. [PMID: 27413389 PMCID: PMC4931053 DOI: 10.1155/2016/6784689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023]
Abstract
The aim of the present study was to investigate the antidepressant-like effects of two fractions, including petroleum ether soluble fraction (Fraction A, FA) and water-EtOH soluble fraction (Fraction B, FB) prepared from the Danzhi-xiaoyao-san (DZXYS) by using chronic unpredictable mild stress-induced depressive rat model. The results indicated that DZXYS could ameliorate the depression-like behavior in chronic stress model of rats. The inhibition of hyperactivity of HPA axis and the modulation of monoamine and amino acid neurotransmitters in the hippocampus may be the important mechanisms underlying the action of DZXYS antidepressant-like effect in chronically stressed rats.
Collapse
|
9
|
Reduced volume of the nucleus accumbens in heroin addiction. Eur Arch Psychiatry Clin Neurosci 2015; 265:637-45. [PMID: 25467383 DOI: 10.1007/s00406-014-0564-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
The neural mechanisms of heroin addiction are still incompletely understood, even though modern neuroimaging techniques offer insights into disease-related changes in vivo. While changes on cortical structure have been reported in heroin addiction, evidence from subcortical areas remains underrepresented. Functional imaging studies revealed that the brain reward system and particularly the nucleus accumbens (NAcc) play a pivotal role in the pathophysiology of drug addiction. The aim of this study was to investigate whether there was a volume difference of the NAcc in heroin addiction in comparison to healthy controls. A further aim was to correlate subcortical volumes with clinical measurements on negative affects in addiction. Thirty heroin-dependent patients under maintenance treatment with diacetylmorphine and twenty healthy controls underwent structural MRI scanning at 3T. Subcortical segmentation analysis was performed using FMRIB's Integrated Registration and Segmentation Tool function of FSL. The State-Trait Anxiety Inventory and the Beck Depression Inventory were used to assess trait anxiety and depressive symptoms, respectively. A decreased volume of the left NAcc was observed in heroin-dependent patients compared to healthy controls. Depression score was negatively correlated with left NAcc volume in patients, whereas a positive correlation was found between the daily opioid dose and the volume of the right amygdala. This study indicates that there might be structural differences of the NAcc in heroin-dependent patients in comparison with healthy controls. Furthermore, correlations of subcortical structures with negative emotions and opioid doses might be of future relevance for the investigation of heroin addiction.
Collapse
|
10
|
Chi KF, Korgaonkar M, Grieve SM. Imaging predictors of remission to anti-depressant medications in major depressive disorder. J Affect Disord 2015; 186:134-44. [PMID: 26233324 DOI: 10.1016/j.jad.2015.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/17/2015] [Accepted: 07/03/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND We review what is currently known about neuroimaging predictors of remission in major depressive disorder (MDD) after antidepressant medication (ADM) treatment. METHODS A systematic literature search found a total of twenty-seven studies comparing baseline neuroimaging findings in depressed patients who achieved remission with non-remitters following treatment with ADMs. RESULTS Eighteen of these studies utilised structural magnetic resonance imaging (MRI). These studies associated larger hippocampal (four studies) and cingulate volume (two studies) with remission. Two diffusion MRI studies identified a positive relationship between the fractional anisotropy of the cingulum bundle and remission. White matter signal hyperintensities were quantified in two papers - both observing decreased remission rates with increasing lesion burden. Nine studies on functional imaging met inclusion criteria - three using functional MRI, one with single photon emission computed tomography (SPECT), and five which evaluated patients with positron emission tomography (PET). These findings were not convergent, with different regions of interest interrogated. LIMITATIONS The studies were generally underpowered. Overall these data were heterogeneous with only a small number identifying concordant findings. CONCLUSIONS At present, the data remains inconsistent. The more promising biomarker of remission to ADMs appears to be hippocampal size, although this marker also has conflicting reports. Given remission should be the primary end-point of treatment, and that ADMs are the front-line treatment type for MDD, more focussed research is required to focus specifically on the imaging correlates of remission to ADMs.
Collapse
Affiliation(s)
- Kee F Chi
- Department of Radiology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW 2006, Australia; Sydney Translational Imaging Laboratory, Charles Perkins Centre and Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Mayuresh Korgaonkar
- The Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School, Sydney, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, The University of Sydney, Westmead Hospital, Sydney, NSW, Australia
| | - Stuart M Grieve
- Department of Radiology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW 2006, Australia; Sydney Translational Imaging Laboratory, Charles Perkins Centre and Sydney Medical School, University of Sydney, NSW 2006, Australia; The Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Dusi N, Barlati S, Vita A, Brambilla P. Brain Structural Effects of Antidepressant Treatment in Major Depression. Curr Neuropharmacol 2015; 13:458-65. [PMID: 26412065 PMCID: PMC4790407 DOI: 10.2174/1570159x1304150831121909] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/16/2014] [Accepted: 12/19/2015] [Indexed: 01/26/2023] Open
Abstract
Depressive disorder is a very frequent and heterogeneous syndrome. Structural imaging techniques offer a useful tool in the comprehension of neurobiological alterations that concern depressive disorder. Altered brain structures in depressive disorder have been particularly located in the prefrontal cortex (medial prefrontal cortex and orbitofrontal cortex, OFC) and medial temporal cortex areas (hippocampus). These brain areas belong to a structural and functional network related to cognitive and emotional processes putatively implicated in depressive symptoms. These volumetric alterations may also represent biological predictors of response to pharmacological treatment. In this context, major findings of magnetic resonance (MR) imaging, in relation to treatment response in depressive disorder, will here be presented and discussed.
Collapse
Affiliation(s)
| | | | | | - Paolo Brambilla
- Dipartimento di Neuroscienze e Salute Mentale, Università degli Studi di Milano, U.O.C. Psichiatria, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35 - 20122 Milano.
| |
Collapse
|
12
|
Early brain changes associated with psychotherapy in major depressive disorder revealed by resting-state fMRI: Evidence for the top-down regulation theory. Int J Psychophysiol 2014; 94:437-44. [DOI: 10.1016/j.ijpsycho.2014.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/17/2023]
|
13
|
Hippocampal atrophy in major depression: a function of childhood maltreatment rather than diagnosis? Neuropsychopharmacology 2014; 39:2723-31. [PMID: 24924799 PMCID: PMC4200502 DOI: 10.1038/npp.2014.145] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/08/2014] [Accepted: 04/15/2014] [Indexed: 11/08/2022]
Abstract
Reduced hippocampal volumes are probably the most frequently reported structural neuroimaging finding associated with major depressive disorder (MDD). However, it remains unclear whether altered hippocampal structure represents a risk factor for or a consequence of MDD. Reduced hippocampal volumes were consistently reported in subjects affected by childhood maltreatment. As the prevalence of childhood maltreatment is highly elevated in MDD populations, previous morphometric findings regarding hippocampal atrophy in MDD therefore might have been confounded by maltreatment experiences. The aim of this study was to differentiate the impact of childhood maltreatment from the influence of MDD diagnosis on hippocampal morphometry. Depressed patients (85) as well as 85 age- and sex-matched healthy controls underwent structural MRI. The Childhood Trauma Questionnaire was administered to estimate experiences of childhood maltreatment. Hippocampal volume and surface structure was examined by the use of two independent methods, automated segmentation (FSL-FIRST) and voxel-based morphometry (VBM8). In line with existing studies, MDD patients showed reduced hippocampal volumes, and childhood maltreatment was consistently associated with hippocampal volume loss in both, patients and healthy controls. However, no analysis revealed significant morphological differences between patients and controls if maltreatment experience was regressed out. Our results suggest that hippocampal alterations in MDD patients may at least partly be traced back to higher occurrence of early-life adverse experiences. Regarding the strong morphometric impact of childhood maltreatment and its distinctly elevated prevalence in MDD populations, this study provides an alternative explanation for frequently observed limbic structural abnormalities in depressed patients.
Collapse
|
14
|
Lai CH, Wu YT, Yu PL, Yuan W. Improvements in white matter micro-structural integrity of right uncinate fasciculus and left fronto-occipital fasciculus of remitted first-episode medication-naïve panic disorder patients. J Affect Disord 2013; 150:330-6. [PMID: 23680435 DOI: 10.1016/j.jad.2013.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We designed this study to investigate neural correlates of white matter micro-structural integrity of remitted patients with first-episode, medication-naïve and very late-onset panic disorder. METHOD Twenty-one remitted patients with panic disorder completed treatment course with treatment of escitalopram (dose range around 10-15 mg/d). Twenty-one healthy controls were also enrolled into this study. Patients and controls all received 3-Tesla magnetic resonance imaging diffusion tensor imaging scanning at baseline and 6th week. We utilized FDT (FMRIB's Diffusion Toolbox v2.0) function of FSL (FMRIB Software Library) to calculate fractional anisotropy (FA). We compared FA values of patients and controls at baseline and 6th week to estimate the changes of FA of remitted patient group and inter-scan bias of controls. FA outputs of remitted patients and controls were compared by independent t test. RESULTS We found increased FA in some regions of right uncinate fasciculus and left fronoto-occipital fasciculus after remission in patient group (corrected p<0.05). Reduced FA of other regions of right uncinate fasciculus was still observed in remitted patients when they were compared to the control group. CONCLUSION Subtle changes of white matter micro-structural integrity after remission might represent neural correlates of treatment effects for first-episode, medication-naïve and very late-onset panic disorder.
Collapse
Affiliation(s)
- Chien-Han Lai
- Department of Psychiatry, Cheng Hsin General Hospital, No. 45, Cheng Hsin St., Pai-Tou Destrict, Taipei City, Taiwan, ROC.
| | | | | | | |
Collapse
|
15
|
Kraus C, Ganger S, Losak J, Hahn A, Savli M, Kranz GS, Baldinger P, Windischberger C, Kasper S, Lanzenberger R. Gray matter and intrinsic network changes in the posterior cingulate cortex after selective serotonin reuptake inhibitor intake. Neuroimage 2013; 84:236-44. [PMID: 23988273 DOI: 10.1016/j.neuroimage.2013.08.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/24/2013] [Accepted: 08/16/2013] [Indexed: 01/31/2023] Open
Abstract
Preclinical studies have demonstrated that serotonin (5-HT) challenge changes neuronal circuitries and microarchitecture. However, evidence in human subjects is missing. Pharmacologic magnetic resonance imaging (phMRI) applying selective 5-HT reuptake inhibitors (SSRIs) and high-resolution structural and functional brain assessment is able to demonstrate the impact of 5-HT challenge on neuronal network morphology and functional activity. To determine how SSRIs induce changes in gray matter and neuronal activity, we conducted a longitudinal study using citalopram and escitalopram. Seventeen healthy subjects completed a structural and functional phMRI study with randomized, cross-over, placebo-controlled, double-blind design. Significant gray matter increases were observed (among other regions) in the posterior cingulate cortex (PCC) and the ventral precuneus after SSRI intake of 10days, while decreases were observed within the pre- and postcentral gyri (all P<0.05, family-wise error [FWE] corrected). Furthermore, enhanced resting functional connectivity (rFC) within the ventral precuneus and PCC was associated with gray matter increases in the PCC (all FWE Pcorr<0.05). Corroborating these results, whole-brain connectivity density, measuring the brain's functional network hubs, was significantly increased after SSRI-intake in the ventral precuneus and PCC (all FWE Pcorr<0.05). Short-term administration of SSRIs changes gray matter structures, consistent with previous work reporting enhancement of neuroplasticity by serotonergic neurotransmission. Furthermore, increased gray matter in the PCC is associated with increased functional connectivity in one of the brain's metabolically most active regions. Our novel findings provide convergent evidence for dynamic alterations of brain structure and function associated with SSRI pharmacotherapy.
Collapse
Affiliation(s)
- Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Functional, Molecular and Translational Neuroimaging Lab - PET & MRI, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Antidepressant-like effects of shuyusan in rats exposed to chronic stress: effects on hypothalamic-pituitary-adrenal function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:940846. [PMID: 23008744 PMCID: PMC3449151 DOI: 10.1155/2012/940846] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/25/2012] [Accepted: 07/09/2012] [Indexed: 11/17/2022]
Abstract
This study was to investigate antidepressant activities of Shuyusan (a Chinese herb), using a rats model of depression induced by unpredictable chronic mild stress (UCMS). The administration groups were treated with Shuyusan decoction for 3 weeks and compared with fluoxetine treatment. In order to understand the potential antidepressant-like activities of Shuyusan, tail suspension test (TST) and forced swimming test (FST) were used as behavioral despair study. The level of corticotropin-releasing factor (CRH), adrenocorticotropic hormone (ACTH), corticosterone (CORT) and hippocampus glucocorticoid receptor expression were examined. After modeling, there was a significant prolongation of immobility time in administration groups with the TST and FST. High-dose Shuyusan could reduce the immobility time measured with the TST and FST. The immobility time in high-dose herbs group and fluoxetine group was increased significantly compared with the model group. After 3 weeks herbs fed, the serum contents level of CRH, ACTH, and CORT in high-dose herb group was significantly decreased compared to the model group. The result indicated that Shuyusan had antidepressant activity effects on UCMS model rats. The potential antidepressant effect may be related to decreasing glucocorticoid levels activity, regulating the function of HPA axis, and inhibiting glucocorticoid receptor expression in hippocampus.
Collapse
|
17
|
Revise the revised? New dimensions of the neuroanatomical hypothesis of panic disorder. J Neural Transm (Vienna) 2012; 120:3-29. [PMID: 22692647 DOI: 10.1007/s00702-012-0811-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 04/16/2012] [Indexed: 12/14/2022]
Abstract
In 2000, Gorman et al. published a widely acknowledged revised version of their 1989 neuroanatomical hypothesis of panic disorder (PD). Herein, a 'fear network' was suggested to mediate fear- and anxiety-related responses: panic attacks result from a dysfunctional coordination of 'upstream' (cortical) and 'downstream' (brainstem) sensory information leading to heightened amygdala activity with subsequent behavioral, autonomic and neuroendocrine activation. Given the emergence of novel imaging methods such as fMRI and the publication of numerous neuroimaging studies regarding PD since 2000, a comprehensive literature search was performed regarding structural (CT, MRI), metabolic (PET, SPECT, MRS) and functional (fMRI, NIRS, EEG) studies on PD, which will be reviewed and critically discussed in relation to the neuroanatomical hypothesis of PD. Recent findings support structural and functional alterations in limbic and cortical structures in PD. Novel insights regarding structural volume increase or reduction, hyper- or hypoactivity, laterality and task-specificity of neural activation patterns emerged. The assumption of a generally hyperactive amygdala in PD seems to apply more to state than trait characteristics of PD, and involvement of further areas in the fear circuit, such as anterior cingulate and insula, is suggested. Furthermore, genetic risk variants have been proposed to partly drive fear network activity. Thus, the present state of knowledge generally supports limbic and cortical prefrontal involvement as originally proposed in the neuroanatomical hypothesis. Some modifications might be suggested regarding a potential extension of the fear circuit, genetic factors shaping neural network activity and neuroanatomically informed clinical subtypes of PD potentially guiding future treatment decisions.
Collapse
|