1
|
Xu Y, Cheng X, Li Y, Shen H, Wan Y, Ping L, Yu H, Cheng Y, Xu X, Cui J, Zhou C. Shared and Distinct White Matter Alterations in Major Depression and Bipolar Disorder: A Systematic Review and Meta-Analysis. J Integr Neurosci 2024; 23:170. [PMID: 39344242 DOI: 10.31083/j.jin2309170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Identifying white matter (WM) microstructural similarities and differences between major depressive disorder (MDD) and bipolar disorder (BD) is an important way to understand the potential neuropathological mechanism in emotional disorders. Numerous diffusion tensor imaging (DTI) studies over recent decades have confirmed the presence of WM anomalies in these two affective disorders, but the results were inconsistent. This study aimed to determine the statistical consistency of DTI findings for BD and MDD by using the coordinate-based meta-analysis (CBMA) approach. METHODS We performed a systematic search of tract-based spatial statistics (TBSS) studies comparing MDD or BD with healthy controls (HC) as of June 30, 2024. The seed-based d-mapping (SDM) was applied to investigate fractional anisotropy (FA) changes. Meta-regression was then used to analyze the potential correlations between demographics and neuroimaging alterations. RESULTS Regional FA reductions in the body of the corpus callosum (CC) were identified in both of these two diseases. Besides, MDD patients also exhibited decreased FA in the genu and splenium of the CC, as well as the left anterior thalamic projections (ATP), while BD patients showed FA reduction in the left median network, and cingulum in addition to the CC. CONCLUSIONS The results highlighted that altered integrity in the body of CC served as the shared basis of MDD and BD, and distinct microstructural WM abnormalities also existed, which might induce the various clinical manifestations of these two affective disorders. The study was registered on PROSPERO (http://www.crd.york.ac.uk/PROSPERO), registration number: CRD42022301929.
Collapse
Affiliation(s)
- Yinghong Xu
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Xiaodong Cheng
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
| | - Ying Li
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Hailong Shen
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Yu Wan
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, 361012 Xiamen, Fujian, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Jian Cui
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
- Department of Psychology, Affiliated Hospital of Jining Medical University, 272067 Jining, Shandong, China
| |
Collapse
|
2
|
Jørgensen KN, Nerland S, Slapø NB, Norbom LB, Mørch-Johnsen L, Wortinger LA, Barth C, Andreou D, Maximov II, Geier OM, Andreassen OA, Jönsson EG, Agartz I. Assessing regional intracortical myelination in schizophrenia spectrum and bipolar disorders using the optimized T1w/T2w-ratio. Psychol Med 2024; 54:2369-2379. [PMID: 38563302 DOI: 10.1017/s0033291724000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Dysmyelination could be part of the pathophysiology of schizophrenia spectrum (SCZ) and bipolar disorders (BPD), yet few studies have examined myelination of the cerebral cortex. The ratio of T1- and T2-weighted magnetic resonance images (MRI) correlates with intracortical myelin. We investigated the T1w/T2w-ratio and its age trajectories in patients and healthy controls (CTR) and explored associations with antipsychotic medication use and psychotic symptoms. METHODS Patients with SCZ (n = 64; mean age = 30.4 years, s.d. = 9.8), BPD (n = 91; mean age 31.0 years, s.d. = 10.2), and CTR (n = 155; mean age = 31.9 years, s.d. = 9.1) who participated in the TOP study (NORMENT, University of Oslo, Norway) were clinically assessed and scanned using a General Electric 3 T MRI system. T1w/T2w-ratio images were computed using an optimized pipeline with intensity normalization and field inhomogeneity correction. Vertex-wise regression models were used to compare groups and examine group × age interactions. In regions showing significant differences, we explored associations with antipsychotic medication use and psychotic symptoms. RESULTS No main effect of diagnosis was found. However, age slopes of the T1w/T2w-ratio differed significantly between SCZ and CTR, predominantly in frontal and temporal lobe regions: Lower T1w/T2w-ratio values with higher age were found in CTR, but not in SCZ. Follow-up analyses revealed a more positive age slope in patients who were using antipsychotics and patients using higher chlorpromazine-equivalent doses. CONCLUSIONS While we found no evidence of reduced intracortical myelin in SCZ or BPD relative to CTR, different regional age trajectories in SCZ may suggest a promyelinating effect of antipsychotic medication.
Collapse
Affiliation(s)
- Kjetil Nordbø Jørgensen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Stener Nerland
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Nora Berz Slapø
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry & Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Laura Anne Wortinger
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Claudia Barth
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver M Geier
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erik G Jönsson
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ingrid Agartz
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
3
|
Guo Y, Dong D, Wu H, Xue Z, Zhou F, Zhao L, Li Z, Feng T. The intracortical myelin content of impulsive choices: results from T1- and T2-weighted MRI myelin mapping. Cereb Cortex 2023; 33:7163-7174. [PMID: 36748995 PMCID: PMC10422924 DOI: 10.1093/cercor/bhad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Delay discounting (DD) refers to a phenomenon that humans tend to choose small-sooner over large-later rewards during intertemporal choices. Steep discounting of delayed outcome is related to a variety of maladaptive behaviors and is considered as a transdiagnostic process across psychiatric disorders. Previous studies have investigated the association between brain structure (e.g. gray matter volume) and DD; however, it is unclear whether the intracortical myelin (ICM) influences DD. Here, based on a sample of 951 healthy young adults drawn from the Human Connectome Project, we examined the relationship between ICM, which was measured by the contrast of T1w and T2w images, and DD and further tested whether the identified associations were mediated by the regional homogeneity (ReHo) of brain spontaneous activity. Vertex-wise regression analyses revealed that steeper DD was significantly associated with lower ICM in the left temporoparietal junction (TPJ) and right middle-posterior cingulate cortex. Region-of-interest analysis revealed that the ReHo values in the left TPJ partially mediated the association of its myelin content with DD. Our findings provide the first evidence that cortical myelination is linked with individual differences in decision impulsivity and suggest that the myelin content affects cognitive performances partially through altered local brain synchrony.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship education, Chongqing University of Posts and Telecommunications, Chongqing, China
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Huimin Wu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyuan Xue
- School of Humanities and Management, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Le Zhao
- Faculty of Psychology, Beijing Normal University, Zhuhai, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Nerland S, Jørgensen KN, Nordhøy W, Maximov II, Bugge RAB, Westlye LT, Andreassen OA, Geier OM, Agartz I. Multisite reproducibility and test-retest reliability of the T1w/T2w-ratio: A comparison of processing methods. Neuroimage 2021; 245:118709. [PMID: 34848300 DOI: 10.1016/j.neuroimage.2021.118709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging (MRI) images is often used as a proxy measure of cortical myelin. However, the T1w/T2w-ratio is based on signal intensities that are inherently non-quantitative and known to be affected by extrinsic factors. To account for this a variety of processing methods have been proposed, but a systematic evaluation of their efficacy is lacking. Given the dependence of the T1w/T2w-ratio on scanner hardware and T1w and T2w protocols, it is important to ensure that processing pipelines perform well also across different sites. METHODS We assessed a variety of processing methods for computing cortical T1w/T2w-ratio maps, including correction methods for nonlinear field inhomogeneities, local outliers, and partial volume effects as well as intensity normalisation. These were implemented in 33 processing pipelines which were applied to four test-retest datasets, with a total of 170 pairs of T1w and T2w images acquired on four different MRI scanners. We assessed processing pipelines across datasets in terms of their reproducibility of expected regional distributions of cortical myelin, lateral intensity biases, and test-retest reliability regionally and across the cortex. Regional distributions were compared both qualitatively with histology and quantitatively with two reference datasets, YA-BC and YA-B1+, from the Human Connectome Project. RESULTS Reproducibility of raw T1w/T2w-ratio distributions was overall high with the exception of one dataset. For this dataset, Spearman rank correlations increased from 0.27 to 0.70 after N3 bias correction relative to the YA-BC reference and from -0.04 to 0.66 after N4ITK bias correction relative to the YA-B1+ reference. Partial volume and outlier corrections had only marginal effects on the reproducibility of T1w/T2w-ratio maps and test-retest reliability. Before intensity normalisation, we found large coefficients of variation (CVs) and low intraclass correlation coefficients (ICCs), with total whole-cortex CV of 10.13% and whole-cortex ICC of 0.58 for the raw T1w/T2w-ratio. Intensity normalisation with WhiteStripe, RAVEL, and Z-Score improved total whole-cortex CVs to 5.91%, 5.68%, and 5.19% respectively, whereas Z-Score and Least Squares improved whole-cortex ICCs to 0.96 and 0.97 respectively. CONCLUSIONS In the presence of large intensity nonuniformities, bias field correction is necessary to achieve acceptable correspondence with known distributions of cortical myelin, but it can be detrimental in datasets with less intensity inhomogeneity. Intensity normalisation can improve test-retest reliability and inter-subject comparability. However, both bias field correction and intensity normalisation methods vary greatly in their efficacy and may affect the interpretation of results. The choice of T1w/T2w-ratio processing method must therefore be informed by both scanner and acquisition protocol as well as the given study objective. Our results highlight limitations of the T1w/T2w-ratio, but also suggest concrete ways to enhance its usefulness in future studies.
Collapse
Affiliation(s)
- Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kjetil N Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wibeke Nordhøy
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ivan I Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Robin A B Bugge
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oliver M Geier
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Hannoun S, Kocevar G, Codjia P, Barile B, Cotton F, Durand-Dubief F, Sappey-Marinier D. T1/T2 ratio: A quantitative sensitive marker of brain tissue integrity in multiple sclerosis. J Neuroimaging 2021; 32:328-336. [PMID: 34752685 DOI: 10.1111/jon.12943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study is to determine whether cerebral white matter (WM) microstructural damage, defined by decreased fractional anisotropy (FA) and increased axial (AD) and radial (RD) diffusivities, could be detected as accurately by measuring the T1/T2 ratio, in relapsing-remitting multiple sclerosis (RRMS) patients compared to healthy control (HC) subjects. METHODS Twenty-eight RRMS patients and 24 HC subjects were included in this study. Region-based analysis based on the ICBM-81 diffusion tensor imaging (DTI) atlas WM labels was performed to compare T1/T2 ratio to DTI values in normal-appearing WM (NAWM) regions of interest. Lesions segmentation was also performed and compared to the HC global WM. RESULTS A significant 19.65% decrease of T1/T2 ratio values was observed in NAWM regions of RRMS patients compared to HC. A significant 6.30% decrease of FA, as well as significant 4.76% and 10.27% increases of AD and RD, respectively, were observed in RRMS compared to the HC group in various NAWM regions. Compared to the global WM HC mask, lesions have significantly decreased T1/T2 ratio and FA and increased AD and RD (p < . 001). CONCLUSIONS Results showed significant differences between RRMS and HC in both DTI and T1/T2 ratio measurements. T1/T2 ratio even demonstrated extensive WM abnormalities when compared to DTI, thereby highlighting the ratio's sensitivity to subtle differences in cerebral WM structural integrity using only conventional MRI sequences.
Collapse
Affiliation(s)
- Salem Hannoun
- Medical Imaging Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Gabriel Kocevar
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France.,Seenovate, Datascience pole, Lyon, France
| | - Pekes Codjia
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France.,Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Berardino Barile
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France
| | - Francois Cotton
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France.,Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Francoise Durand-Dubief
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France.,Service de Neurologie A, Hôpital Neurologique Pierre Wertheimer, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Dominique Sappey-Marinier
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France.,Département IRM, CERMEP-Imagerie du Vivant, Université de Lyon, Bron, France
| |
Collapse
|
6
|
Rokicki J, Wolfers T, Nordhøy W, Tesli N, Quintana DS, Alnaes D, Richard G, de Lange AMG, Lund MJ, Norbom L, Agartz I, Melle I, Naerland T, Selbaek G, Persson K, Nordvik JE, Schwarz E, Andreassen OA, Kaufmann T, Westlye LT. Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders. Hum Brain Mapp 2020; 42:1714-1726. [PMID: 33340180 PMCID: PMC7978139 DOI: 10.1002/hbm.25323] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The deviation between chronological age and age predicted using brain MRI is a putative marker of overall brain health. Age prediction based on structural MRI data shows high accuracy in common brain disorders. However, brain aging is complex and heterogenous, both in terms of individual differences and the underlying biological processes. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub‐cortical volumes, cortical and subcortical T1/T2‐weighted ratios, and cerebral blood flow (CBF) based on arterial spin labeling. For each of the 11 models we assessed the age prediction accuracy in healthy controls (HC, n = 750) and compared the obtained brain age gaps (BAGs) between age‐matched subsets of HC and patients with Alzheimer's disease (AD, n = 54), mild (MCI, n = 90) and subjective (SCI, n = 56) cognitive impairment, schizophrenia spectrum (SZ, n = 159) and bipolar disorder (BD, n = 135). We found highest age prediction accuracy in HC when integrating all modalities. Furthermore, two‐group case–control classifications revealed highest accuracy for AD using global T1‐weighted BAG, while MCI, SCI, BD and SZ showed strongest effects in CBF‐based BAGs. Combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders. The multimodal BAG was most accurate in predicting age in HC, while group differences between patients and HC were often larger for BAGs based on single modalities. These findings indicate that multidimensional neuroimaging of patients may provide a brain‐based mapping of overlapping and distinct pathophysiology in common disorders.
Collapse
Affiliation(s)
- Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Thomas Wolfers
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Wibeke Nordhøy
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Natalia Tesli
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Daniel S Quintana
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Dag Alnaes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Genevieve Richard
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ann-Marie G de Lange
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,Department of Psychiatry, University of Oxford, Oxford, UK
| | - Martina J Lund
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Linn Norbom
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Terje Naerland
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Geir Selbaek
- Norwegian National Advisory Unit On Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karin Persson
- Norwegian National Advisory Unit On Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | | | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Qi X, Wu C, Du Y, Cheng S, Wen Y, Ma M, Liang C, Liu L, Cheng B, Zhang L, Li P, Zhang F. Comparing GWAS and Brain Structure-Specific Gene Expression Profiles Identifies Psychiatric Disorder-Related Brain Structures at Different Developmental Stages. Neurosci Bull 2020; 36:1046-1050. [PMID: 32474855 DOI: 10.1007/s12264-020-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/14/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Cuiyan Wu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanan Du
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
8
|
Tullo S, Patel R, Devenyi GA, Salaciak A, Bedford SA, Farzin S, Wlodarski N, Tardif CL, Breitner JCS, Chakravarty MM. MR-based age-related effects on the striatum, globus pallidus, and thalamus in healthy individuals across the adult lifespan. Hum Brain Mapp 2019; 40:5269-5288. [PMID: 31452289 PMCID: PMC6864890 DOI: 10.1002/hbm.24771] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 01/18/2023] Open
Abstract
While numerous studies have used magnetic resonance imaging (MRI) to elucidate normative age-related trajectories in subcortical structures across the human lifespan, there exists substantial heterogeneity among different studies. Here, we investigated the normative relationships between age and morphology (i.e., volume and shape), and microstructure (using the T1-weighted/T2-weighted [T1w/T2w] signal ratio as a putative index of myelin and microstructure) of the striatum, globus pallidus, and thalamus across the adult lifespan using a dataset carefully quality controlled, yielding a final sample of 178 for the morphological analyses, and 162 for the T1w/T2w analyses from an initial dataset of 253 healthy subjects, aged 18-83. In accordance with previous cross-sectional studies of adults, we observed age-related volume decrease that followed a quadratic relationship between age and bilateral striatal and thalamic volumes, and a linear relationship in the globus pallidus. Our shape indices consistently demonstrated age-related posterior and medial areal contraction bilaterally across all three structures. Beyond morphology, we observed a quadratic inverted U-shaped relationship between T1w/T2w signal ratio and age, with a peak value occurring in middle age (at around 50 years old). After permutation testing, the Akaike information criterion determined age relationships remained significant for the bilateral globus pallidus and thalamus, for both the volumetric and T1w/T2w analyses. Our findings serve to strengthen and expand upon previous volumetric analyses by providing a normative baseline of morphology and microstructure of these structures to which future studies investigating patients with various disorders can be compared.
Collapse
Affiliation(s)
- Stephanie Tullo
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
| | - Raihaan Patel
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
- Department of Biological and Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| | - Gabriel A. Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Alyssa Salaciak
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
| | - Saashi A. Bedford
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
| | - Sarah Farzin
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
| | - Nancy Wlodarski
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
| | - Christine L. Tardif
- McConnell Brain Imaging CenterMontreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | | | - John C. S. Breitner
- Centre for the Studies on the Prevention of ADDouglas Mental Health University InstituteVerdunQuebecCanada
| | - M. Mallar Chakravarty
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
- Department of Biological and Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
9
|
Pelkmans W, Dicks E, Barkhof F, Vrenken H, Scheltens P, van der Flier WM, Tijms BM. Gray matter T1-w/T2-w ratios are higher in Alzheimer's disease. Hum Brain Mapp 2019; 40:3900-3909. [PMID: 31157938 PMCID: PMC6771703 DOI: 10.1002/hbm.24638] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/18/2023] Open
Abstract
Myelin determines the conduction of neuronal signals along axonal connections in networks of the brain. Loss of myelin integrity in neuronal circuits might result in cognitive decline in Alzheimer's disease (AD). Recently, the ratio of T1-weighted by T2-weighted MRI has been used as a proxy for myelin content in gray matter of the cortex. With this approach, we investigated whether AD dementia patients show lower cortical myelin content (i.e., a lower T1-w/T2-w ratio value). We selected structural T1-w and T2-w MR images of 293 AD patients and 172 participants with normal cognition (NC). T1-w/T2-w ratios were computed for the whole brain and within 90 automated anatomical labeling atlas regions using SPM12, compared between groups and correlated with the neuronal injury marker tau in cerebrospinal fluid (CSF) and Mini Mental State Examination (MMSE). In contrast to our hypothesis, AD patients showed higher whole brain T1-w/T2-w ratios than NC, and regionally in 31 anatomical areas (p < .0005; d = 0.21 to 0.48), predominantly in the inferior parietal lobule, angular gyrus, anterior cingulate, and precuneus. Regional higher T1-w/T2-w values were associated with higher CSF tau concentrations (p < .0005; r = .16 to .22) and worse MMSE scores (p < .0005; r = -.16 to -.21). These higher T1-w/T2-w values in AD seem to contradict previous pathological findings of demyelination and disconnectivity in AD. Future research should further investigate the biological processes reflected by increases in T1-w/T2-w values.
Collapse
Affiliation(s)
- Wiesje Pelkmans
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ellen Dicks
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Hugo Vrenken
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Comparisons between multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor imaging measures in healthy human brain structures. Sci Rep 2019; 9:2500. [PMID: 30792440 PMCID: PMC6384876 DOI: 10.1038/s41598-019-39199-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/18/2019] [Indexed: 01/13/2023] Open
Abstract
Various MRI techniques, including myelin water imaging, T1w/T2w ratio mapping and diffusion-based imaging can be used to characterize tissue microstructure. However, surprisingly few studies have examined the degree to which these MRI measures are related within and between various brain regions. Therefore, whole-brain MRI scans were acquired from 31 neurologically-healthy participants to empirically measure and compare myelin water fraction (MWF), T1w/T2w ratio, fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) in 25 bilateral (10 grey matter; 15 white matter) regions-of-interest (ROIs). Except for RD vs. T1w/T2w, MD vs. T1w/T2w, moderately significant to highly significant correlations (p < 0.001) were found between each of the other measures across all 25 brain structures [T1w/T2w vs. MWF (Pearson r = 0.33, Spearman ρ = 0.31), FA vs. MWF (r = 0.73, ρ = 0.75), FA vs. T1w/T2w (r = 0.25, ρ = 0.22), MD vs. AD (r = 0.57, ρ = 0.58), MD vs. RD (r = 0.64, ρ = 0.61), AD vs. MWF (r = 0.43, ρ = 0.36), RD vs. MWF (r = −0.49, ρ = −0.62), MD vs. MWF (r = −0.22, ρ = −0.29), RD vs. FA (r = −0.62, ρ = −0.75) and MD vs. FA (r = −0.22, ρ = −0.18)]. However, while all six MRI measures were correlated with each other across all structures, there were large intra-ROI and inter-ROI differences (i.e., with no one measure consistently producing the highest or lowest values). This suggests that each quantitative MRI measure provides unique, and potentially complimentary, information about underlying brain tissues – with each metric offering unique sensitivity/specificity tradeoffs to different microstructural properties (e.g., myelin content, tissue density, etc.).
Collapse
|
11
|
Vandewouw MM, Young JM, Shroff MM, Taylor MJ, Sled JG. Altered myelin maturation in four year old children born very preterm. NEUROIMAGE-CLINICAL 2018; 21:101635. [PMID: 30573411 PMCID: PMC6413416 DOI: 10.1016/j.nicl.2018.101635] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 11/06/2022]
Abstract
Children born very preterm (VPT; <32 weeks gestational age [GA]) are at greater risk for a range of cognitive deficits that typically manifest at school age. Here we examine the hypothesis that these children have altered myelin maturational that can be detected by myelin sensitive MRI measures prior to school age. We included 33 four-year old children born VPT (mean GA; 28.7 weeks) and 23 four-year old full term (FT) children and completed magnetization transfer (MT), T1-weighted (T1-w) and T2-weighted (T1-w) magnetic resonance imaging as well as developmental assessments. Both MT ratio (MTR) and T1-w/T2-w ratio images were calculated, and group differences were probed using tract-based spatial statistics (TBSS) in white matter, and region of interest (ROI) analysis in white, subcortical gray and cortical gray matter. The relations between MTR and T1-w/T2-w ratio, as well as with developmental assessments, were investigated in all three brain divisions. In children born VPT, TBSS and ROI analysis revealed that both MTR and T1-w/T2-w ratio were significantly reduced in white matter compared to children born FT. ROI analysis showed reductions in T1-w/T2-w ratio in VPT children compared to FT children in the thalamus, putamen and amygdala, as well as in the occipital and temporal lobes. Across the VPT and FT children, T1-w/T2-w ratio and MTR were highly correlated across white, subcortical gray and cortical gray matter. Both measures correlated positively with developmental assessments in individual white matter tracts and cortical and subcortical ROIs, suggesting that higher MTR and T1-w/T2-w ratio is related to better cognitive performance. Together these findings are consistent with delayed myelination in VPT born children. Very preterm children have widespread decreased MTR in white matter. T1-w/T2-w ratio measures showed consistent white matter alterations. T1-w/T2-w ratio was also reduced in subcortical, occipital and temporal regions. MTR and T1-w/T2-w were correlated throughout the brain. MTR and T1-w/T2-w correlated with developmental assessments.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada.
| | - Julia M Young
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Manohar M Shroff
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - John G Sled
- Translational Medicine, SickKids Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
van Dun K, Mitoma H, Manto M. Cerebellar Cortex as a Therapeutic Target for Neurostimulation. THE CEREBELLUM 2018; 17:777-787. [PMID: 30276522 DOI: 10.1007/s12311-018-0976-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-invasive stimulation of the cerebellum is growingly applied both in the clinic and in research settings to modulate the activities of cerebello-cerebral loops. The anatomical location of the cerebellum, the high responsiveness of the cerebellar cortex to magnetic/electrical stimuli, and the implication of the cerebellum in numerous cerebello-cerebral networks make the cerebellum an ideal target for investigations and therapeutic purposes. In this mini-review, we discuss the potentials of cerebellar neuromodulation in major brain disorders in order to encourage large-scale sham-controlled research and explore this therapeutic aid further.
Collapse
Affiliation(s)
- Kim van Dun
- Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussels, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.,Service des Neurosciences, UMons, Mons, Belgium
| |
Collapse
|
13
|
Uddin MN, Figley TD, Figley CR. Effect of echo time and T2-weighting on GRASE-based T1w/T2w ratio measurements at 3T. Magn Reson Imaging 2018; 51:35-43. [DOI: 10.1016/j.mri.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022]
|
14
|
Chopra S, Shaw M, Shaw T, Sachdev PS, Anstey KJ, Cherbuin N. More highly myelinated white matter tracts are associated with faster processing speed in healthy adults. Neuroimage 2018; 171:332-340. [DOI: 10.1016/j.neuroimage.2017.12.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 01/23/2023] Open
|
15
|
Pezzoli S, Emsell L, Yip SW, Dima D, Giannakopoulos P, Zarei M, Tognin S, Arnone D, James A, Haller S, Frangou S, Goodwin GM, McDonald C, Kempton MJ. Meta-analysis of regional white matter volume in bipolar disorder with replication in an independent sample using coordinates, T-maps, and individual MRI data. Neurosci Biobehav Rev 2018; 84:162-170. [PMID: 29162519 PMCID: PMC5771263 DOI: 10.1016/j.neubiorev.2017.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Abstract
Converging evidence suggests that bipolar disorder (BD) is associated with white matter (WM) abnormalities. Meta-analyses of voxel based morphometry (VBM) data is commonly performed using published coordinates, however this method is limited since it ignores non-significant data. Obtaining statistical maps from studies (T-maps) as well as raw MRI datasets increases accuracy and allows for a comprehensive analysis of clinical variables. We obtained coordinate data (7-studies), T-Maps (12-studies, including unpublished data) and raw MRI datasets (5-studies) and analysed the 24 studies using Seed-based d Mapping (SDM). A VBM analysis was conducted to verify the results in an independent sample. The meta-analysis revealed decreased WM volume in the posterior corpus callosum extending to WM in the posterior cingulate cortex. This region was significantly reduced in volume in BD patients in the independent dataset (p=0.003) but there was no association with clinical variables. We identified a robust WM volume abnormality in BD patients that may represent a trait marker of the disease and used a novel methodology to validate the findings.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK; Department of Psychosis Studies, Institute of Psychiatry Psychology & Neuroscience, King's College London, UK
| | - Louise Emsell
- Translational MRI, Department of Imaging & Pathology, KU Leuven, Belgium; Department of Old Age Psychiatry, University Psychiatry Centre (UPC), KU Leuven, Belgium; Neuroimaging, Cognition & Genomics Centre (NICOG) & NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sarah W Yip
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Danai Dima
- Department of Psychology, City, University of London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | | | - Mojtaba Zarei
- National Brain Mapping Centre, Shahid Beheshti University, General and Medical Campus, Tehran, Iran
| | - Stefania Tognin
- Department of Psychosis Studies, Institute of Psychiatry Psychology & Neuroscience, King's College London, UK
| | - Danilo Arnone
- Centre for Affective Disorders, Institute of Psychiatry Psychology & Neuroscience, King's College London, UK
| | - Anthony James
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sven Haller
- Affidea CDRC - Centre Diagnostique Radiologique de Carouge, Switzerland; Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden; Department of Neuroradiology, University Hospital Freiburg, Germany; Faculty of Medicine of the University of Geneva, Switzerland
| | | | - Guy M Goodwin
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Colm McDonald
- Neuroimaging, Cognition & Genomics Centre (NICOG) & NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry Psychology & Neuroscience, King's College London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK.
| |
Collapse
|
16
|
Yasuno F, Kudo T, Yamamoto A, Matsuoka K, Takahashi M, Iida H, Ihara M, Nagatsuka K, Kishimoto T. Significant correlation between openness personality in normal subjects and brain myelin mapping with T1/T2-weighted MR imaging. Heliyon 2017; 3:e00411. [PMID: 28971152 PMCID: PMC5614635 DOI: 10.1016/j.heliyon.2017.e00411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/26/2017] [Accepted: 09/15/2017] [Indexed: 11/26/2022] Open
Abstract
Background The objective of this study was to examine the relationship between the myelination and the psychological trait of openness to experience in young cognitively normal volunteers using regional T1-weighted (T1w)/T2w ratios on magnetic resonance imaging (MRI). It was hypothesized that axonal myelination would be related to openness, thus linking trait creativity and mental illness. Methods We recruited 37 healthy subjects and administered the NEO Five-Factor Inventory to assess personality factors. Regional T1w/T2w MRI values were computed as surrogate indicators of myelination status and correlations between T1w/T2w values and various personality factors (e.g., trait of openness) were calculated with a voxel-based analysis using statistical parametric mapping. Results Significant negative correlations were identified between the trait of openness and T1w/T2w values in the medial frontal cortex, anterior cingulate cortex, posterior cingulate cortex, and posterior insula/adjacent putamen. These relationships remained significant even after adjusting for age, sex, and education as covariates. There were no significant correlations between other personality factors and regional volumes. Conclusions Individual differences in openness may be associated with variations in intra-cortical myelination, specifically in the imaginative network of the brain including the midline core ‘hubs’ of the default mode network (anterior cingulate/medial frontal cortex and posterior cingulate cortex) and regions related to motivational state (posterior insula and adjacent putamen). Signal interference related to decreased myelination may facilitate flexible imagination and the trait of openness. Our findings assist in understanding the relationship between myelination and openness, as a link between creativity and mental illness.
Collapse
Affiliation(s)
- Fumihiko Yasuno
- Department of Psychiatry, Nara Medical University, Kashihara, Japan.,Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takashi Kudo
- Department of Psychiatry, Osaka University Health Care Center, Toyonaka, Japan
| | - Akihide Yamamoto
- Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kiwamu Matsuoka
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Masato Takahashi
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Hidehiro Iida
- Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kazuyuki Nagatsuka
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | | |
Collapse
|