1
|
Yin H, Jiang M, Han T, Xu X. Intranasal oxytocin as a treatment for anxiety and autism: From subclinical to clinical applications. Peptides 2024; 176:171211. [PMID: 38579916 DOI: 10.1016/j.peptides.2024.171211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Animal and human studies have demonstrated that intranasal oxytocin (OT) can penetrate the brain and induce cognitive, emotional, and behavioral changes, particularly in social functioning. Consequently, numerous investigations have explored the potential of OT as a treatment for anxiety and autism, conditions characterized by social deficits. Although both subclinical and clinical studies provide converging evidence of the therapeutic effects of OT in reducing anxiety levels and improving social symptoms in autism, results are not always consistent. Additionally, the pharmacological mechanism of OT requires further elucidation for its effective clinical application. Therefore, this review aims to examine the contentious findings concerning the effects of OT on anxiety and autism, offer interpretations of the inconsistent results from the perspectives of individual differences and varying approaches to OT administration, and shed light on the underlying mechanisms of OT. Ultimately, standardization of dosage, frequency of administration, formulation characteristics, and nasal spray devices is proposed as essential for future human studies and clinical applications of OT treatment.
Collapse
Affiliation(s)
- Hailian Yin
- School of psychology, Shandong Normal University, Jinan 250014, China
| | - Meiyun Jiang
- School of psychology, Shandong Normal University, Jinan 250014, China
| | - Tao Han
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Xiaolei Xu
- School of psychology, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
2
|
Yamasue H. Is the efficacy of oxytocin for autism diminished at higher dosages or repeated doses?: Potential mechanisms and candidate solutions. Peptides 2024; 171:171133. [PMID: 38072084 DOI: 10.1016/j.peptides.2023.171133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
No approved pharmacological intervention currently exists to address the core symptoms of autism spectrum disorder, a prevalent neurodevelopmental condition. However, there is a growing body of empirical evidence highlighting oxytocin's modulatory effects on social and communicative behaviors. Numerous single-dose trials have consistently demonstrated the efficacy of oxytocin in ameliorating behavioral and neural measurements associated with the core symptoms of autism spectrum disorder. Nevertheless, prior investigations involving the repeated administration of oxytocin have yielded disparate findings concerning its effectiveness, particularly in relation to clinical measures of the core symptoms of autism spectrum disorder. Recent studies have also raised the possibility of diminishing efficacy of oxytocin over time, particularly when higher or recurrent dosages of oxytocin are administered. This review article aims to provide an overview of previous studies examining this issue. Furthermore, it aims to discuss the potential mechanisms underlying these effects, including the interaction between oxytocin and vasopressin, as well as potential strategies for addressing the challenges mentioned. This review's overall objective is to provide insights into the potential development of innovative therapeutics to mitigate the core symptoms of autism spectrum disorder, representing potential breakthroughs in the treatment of this complex neurodevelopmental condition.
Collapse
Affiliation(s)
- Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
3
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
4
|
Oubraim S, Shen RY, Haj-Dahmane S. Oxytocin excites dorsal raphe serotonin neurons and bidirectionally gates their glutamate synapses. iScience 2023; 26:106707. [PMID: 37250336 PMCID: PMC10214716 DOI: 10.1016/j.isci.2023.106707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Oxytocin (OXT) modulates wide spectrum of social and emotional behaviors via modulation of numerous neurotransmitter systems, including serotonin (5-HT). However, how OXT controls the function of dorsal raphe nucleus (DRN) 5-HT neurons remains unknown. Here, we reveal that OXT excites and alters the firing pattern of 5-HT neurons via activation of postsynaptic OXT receptors (OXTRs). In addition, OXT induces cell-type-specific depression and potentiation of DRN glutamate synapses by two retrograde lipid messengers, 2-arachidonoylglycerol (2-AG) and arachidonic acid (AA), respectively. Neuronal mapping demonstrates that OXT preferentially potentiates glutamate synapses of 5-HT neurons projecting to medial prefrontal cortex (mPFC) and depresses glutamatergic inputs to 5-HT neurons projecting to lateral habenula (LHb) and central amygdala (CeA). Thus, by engaging distinct retrograde lipid messengers, OXT exerts a target-specific gating of glutamate synapses on the DRN. As such, our data uncovers the neuronal mechanisms by which OXT modulates the function of DRN 5-HT neurons.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
- University at Buffalo Neuroscience Program, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
- University at Buffalo Neuroscience Program, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Chronic stress and stressful emotional contagion affect the empathy-like behavior of rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01081-9. [PMID: 36899132 DOI: 10.3758/s13415-023-01081-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Empathy is a potential motivation for prosocial behaviors that is related to many psychiatric diseases, such as major depressive disorder; however, its neural mechanisms remain unclear. To elucidate the relationship between empathy and stress, we established a chronic stress contagion (SC) procedure combined with chronic unpredictable mild stress (CUMS) to investigate (1) whether depressive rats show impaired empathy-like behavior toward fearful conspecifics, (2) whether frequent social contact with normal familiar conspecifics (social support) alleviates the negative effects of CUMS, and (3) the effect of long-term exposure to a depressed partner on emotional and empathic responses in normal rats. We found that the CUMS group showed less empathy-like behavior in the social transfer of fear model (STFM), as indicated by less social interaction with the demonstrator and reduced freezing behavior in the fear-expression test. Social contact partially alleviated depression-like behaviors and the negative effect of CUMS in the fear-transfer test. The normal rats who experienced stress contagion from daily exposure to a depressed partner for 3 weeks showed lower anxiety and increased social response in the fear-transfer test than the control group. We concluded that chronic stress impairs empathy-like behaviors, while social contact partially buffers the effect of CUMS. Thus, social contact or contagion of stress is mutually beneficial to both stressed individuals and nonstressed partners. Higher dopamine and lower norepinephrine levels in the basolateral amygdala probably contributed to these beneficial effects.
Collapse
|
6
|
Daughters K, Rees DA, Hunnikin L, Wells A, Hall J, van Goozen S. Oxytocin administration versus emotion training in healthy males: considerations for future research. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210056. [PMID: 35858104 PMCID: PMC9272145 DOI: 10.1098/rstb.2021.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Identifying emotions correctly is essential for successful social interaction. There is therefore a keen interest in designing therapeutic interventions to improve emotion recognition in individuals who struggle with social interaction. The neuropeptide oxytocin has been proposed as a potential physiological intervention due to its important role in emotion recognition and other aspects of social cognition. However, there are a number of caveats to consider with the current form of intranasal oxytocin commonly used in the literature. Psychological interventions, on the other hand, do not carry the same caveats, and there is, therefore, a need to understand how intranasal oxytocin administration compares to psychological interventions designed to target the same psychological phenomena; and whether a combined intervention approach may provide additive benefits. Here we present a pilot, proof-of-concept study in healthy volunteers comparing the effect of intranasal oxytocin against a validated emotion training programme, finding that the psychological intervention, and not intranasal oxytocin, improved emotion recognition specifically for angry expressions. We discuss the theoretical implications of the research for future clinical trials. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Katie Daughters
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Laura Hunnikin
- Centre for Human Developmental Science, Cardiff University, Cardiff, UK
| | - Amy Wells
- Centre for Human Developmental Science, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | | |
Collapse
|
7
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
8
|
Li X, Zhang K, He X, Zhou J, Jin C, Shen L, Gao Y, Tian M, Zhang H. Structural, Functional, and Molecular Imaging of Autism Spectrum Disorder. Neurosci Bull 2021; 37:1051-1071. [PMID: 33779890 DOI: 10.1007/s12264-021-00673-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/20/2020] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder associated with both genetic and environmental risks. Neuroimaging approaches have been widely employed to parse the neurophysiological mechanisms underlying ASD, and provide critical insights into the anatomical, functional, and neurochemical changes. We reviewed recent advances in neuroimaging studies that focused on ASD by using magnetic resonance imaging (MRI), positron emission tomography (PET), or single-positron emission tomography (SPECT). Longitudinal structural MRI has delineated an abnormal developmental trajectory of ASD that is associated with cascading neurobiological processes, and functional MRI has pointed to disrupted functional neural networks. Meanwhile, PET and SPECT imaging have revealed that metabolic and neurotransmitter abnormalities may contribute to shaping the aberrant neural circuits of ASD. Future large-scale, multi-center, multimodal investigations are essential to elucidate the neurophysiological underpinnings of ASD, and facilitate the development of novel diagnostic biomarkers and better-targeted therapy.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Kai Zhang
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan
| | - Xiao He
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Lesang Shen
- Department of Surgical Oncology, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuanxue Gao
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
9
|
Intranasal oxytocin in the treatment of autism spectrum disorders: A multilevel meta-analysis. Neurosci Biobehav Rev 2021; 122:18-27. [PMID: 33400920 DOI: 10.1016/j.neubiorev.2020.12.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/14/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Intranasal oxytocin has been shown to promote social functioning and has recently been applied as a treatment for autism spectrum disorders (ASD). The current meta-analysis aims to assess the crucial question of oxytocin's efficacy in the treatment of ASD. We performed a systematic literature search, including randomized, single- or double-blind/open-label and placebo-controlled clinical trials as well as single-arm, non-randomized and uncontrolled studies investigating exogenous oxytocin effect on ASD. A total of 28 studies (N = 726 ASD patients) met our predefined inclusion criteria. We used a multilevel meta-analytic model and found that oxytocin had beneficial effects on social functioning, but did not find strong evidence for symptoms improvement in the non-social domain. Our findings suggest that oxytocin administration can be regarded as an effective treatment for some core aspects of ASD, especially in the domain of social functioning, highlighting the promise of using oxytocin as a new-generation therapeutic to address core social impairments in ASD.
Collapse
|
10
|
Hong MP, Erickson CA. Investigational drugs in early-stage clinical trials for autism spectrum disorder. Expert Opin Investig Drugs 2019; 28:709-718. [PMID: 31352835 DOI: 10.1080/13543784.2019.1649656] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Pharmacologic interventions in Autism Spectrum Disorder (ASD) have historically focused on symptom-based approaches. However, a treatment for the core social deficits has remained unidentified. While a definitive theory for the cause of ASD is not yet known, recent advances in our understanding of ASD pathophysiology have opened the door for research on new pharmaceutical methods to target core symptomology. Areas covered: Herein, we review the novel pharmacologic therapies undergoing early-stage clinical trials for the treatment of the social symptoms associated with ASD. Specifically, these strategies center on altering neurologic excitatory and inhibitory imbalance, neuropeptide abnormalities, immunologic dysfunction, and biochemical deficiencies in ASD. Expert opinion: Utilizing the growing field of knowledge regarding the pathological mechanisms and altered neurobiology of individuals with ASD has led to the development of many innovative pharmaceutical interventions. Clinical trials for neurobiologic and immunologic targets show promise in impacting the social behavior and processing deficits in ASD but need evaluation in larger clinical trials and continued biomarker development to more effectively and consistently assess pharmacologic effects. Additionally, evaluating patient-specific drug responsivity and integrating behavioral intervention in conjunction with pharmacologic treatment is crucial to developing a successful approach to ASD treatment.
Collapse
Affiliation(s)
- Michael P Hong
- a Division of Psychiatry, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b College of Medicine, University of Cincinnati , Cincinnati , Oh , USA
| | - Craig A Erickson
- a Division of Psychiatry, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b College of Medicine, University of Cincinnati , Cincinnati , Oh , USA
| |
Collapse
|
11
|
Social Cognition Dysfunctions in Neurodegenerative Diseases: Neuroanatomical Correlates and Clinical Implications. Behav Neurol 2018; 2018:1849794. [PMID: 29854017 PMCID: PMC5944290 DOI: 10.1155/2018/1849794] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
Social cognitive function, involved in the perception, processing, and interpretation of social information, has been shown to be crucial for successful communication and interpersonal relationships, thereby significantly impacting mental health, well-being, and quality of life. In this regard, assessment of social cognition, mainly focusing on four key domains, such as theory of mind (ToM), emotional empathy, and social perception and behavior, has been increasingly evaluated in clinical settings, given the potential implications of impairments of these skills for therapeutic decision-making. With regard to neurodegenerative diseases (NDs), most disorders, characterized by variable disease phenotypes and progression, although similar for the unfavorable prognosis, are associated to impairments of social cognitive function, with consequent negative effects on patients' management. Specifically, in some NDs these deficits may represent core diagnostic criteria, such as for behavioral variant frontotemporal dementia (bvFTD), or may emerge during the disease course as critical aspects, such as for Parkinson's and Alzheimer's diseases. On this background, we aimed to revise the most updated evidence on the neurobiological hypotheses derived from network-based approaches, clinical manifestations, and assessment tools of social cognitive dysfunctions in NDs, also prospecting potential benefits on patients' well-being, quality of life, and outcome derived from potential therapeutic perspectives of these deficits.
Collapse
|
12
|
Abstract
Autism spectrum disorder (ASD) is a condition with onset in early childhood characterized by marked deficits in interpersonal interactions and communication and by a restricted and repetitive range of interests and activities. This review points out key recent findings utilizing molecular imaging including magnetic resonance spectroscopy (MRS) and nuclear neuroimaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). MRS indicates an excitatory/inhibitory imbalance in high-functioning autism. Dysfunction of neurotransmitter and glucose metabolism has been demonstrated by PET and SPECT. Levels of serotonin synthesis in typically developing children are approximately twice those of adults; after the age of 5 years, levels decrease to those of adults. In contrast, levels of serotonin synthesis of children with ASD increase between ages 2 and 15 to 1.5-times adult values. The dopamine transporter is increased in the orbitofrontal cortex of men with ASD. The serotonin transporter is reduced in the brains of children, adolescents, and adults with ASD. Reduced serotonin receptors in the thalamus of adults with ASD are associated with communication difficulties. Glucose metabolism is reduced in the brains of people with ASD. Molecular imaging will provide the preliminary data for promising therapeutic interventions.
Collapse
Affiliation(s)
- Brian Jaeho Hwang
- a Department of Neuroscience , Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University , Baltimore , MD , USA
| | - Mona Adel Mohamed
- b Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science School of Medicine , Johns Hopkins University , Baltimore , MD , USA
| | - James Robert Brašić
- c Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science , School of Medicine, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|