1
|
Sun Y, Wu D, Yang X, Tang B, Xia C, Luo C, Gong Q, Lui S, Hu N. The associations of peripheral interleukin alterations and hippocampal subfield volume deficits in schizophrenia. Cereb Cortex 2024; 34:bhae308. [PMID: 39077921 DOI: 10.1093/cercor/bhae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
The hippocampus is one of the brain regions most vulnerable to inflammatory insults, and the relationships between peripheral inflammation and hippocampal subfields in patients with schizophrenia remain unclear. In this study, forty-six stably medicated patients with schizophrenia and 48 demographically matched healthy controls (HCs) were recruited. The serum levels of IL - 1β, IL-6, IL-10, and IL-12p70 were measured, and 3D high-resolution T1-weighted magnetic resonance imaging was performed. The IL levels and hippocampal subfield volumes were both compared between patients and HCs. The associations of altered IL levels with hippocampal subfield volumes were assessed in patients. Patients with schizophrenia demonstrated higher serum levels of IL-6 and IL-10 but lower levels of IL-12p70 than HCs. In patients, the levels of IL-6 were positively correlated with the volumes of the left granule cell layer of the dentate gyrus (GCL) and cornu Ammonis (CA) 4, while the levels of IL-10 were negatively correlated with the volumes of those subfields. IL-6 and IL-10 might have antagonistic roles in atrophy of the left GCL and CA4. This suggests a complexity of peripheral cytokine dysregulation and the potential for its selective effects on hippocampal substructures, which might be related to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Yuan Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Dongsheng Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 18, Section 3, South Renmin Road, Chengdu 610041, China
| | - Xiyue Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Biqiu Tang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Chao Xia
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Chunyan Luo
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Na Hu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| |
Collapse
|
2
|
Jarholm JA, Bjørnerud A, Dalaker TO, Akhavi MS, Kirsebom BE, Pålhaugen L, Nordengen K, Grøntvedt GR, Nakling A, Kalheim LF, Almdahl IS, Tecelão S, Fladby T, Selnes P. Medial Temporal Lobe Atrophy in Predementia Alzheimer's Disease: A Longitudinal Multi-Site Study Comparing Staging and A/T/N in a Clinical Research Cohort. J Alzheimers Dis 2023; 94:259-279. [PMID: 37248900 PMCID: PMC10657682 DOI: 10.3233/jad-221274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Atrophy of the medial temporal lobe (MTL) is a biological characteristic of Alzheimer's disease (AD) and can be measured by segmentation of magnetic resonance images (MRI). OBJECTIVE To assess the clinical utility of automated volumetry in a cognitively well-defined and biomarker-classified multi-center longitudinal predementia cohort. METHODS We used Automatic Segmentation of Hippocampal Subfields (ASHS) to determine MTL morphometry from MRI. We harmonized scanner effects using the recently developed longitudinal ComBat. Subjects were classified according to the A/T/N system, and as normal controls (NC), subjective cognitive decline (SCD), or mild cognitive impairment (MCI). Positive or negative values of A, T, and N were determined by cerebrospinal fluid measurements of the Aβ42/40 ratio, phosphorylated and total tau. From 406 included subjects, longitudinal data was available for 206 subjects by stage, and 212 subjects by A/T/N. RESULTS Compared to A-/T-/N- at baseline, the entorhinal cortex, anterior and posterior hippocampus were smaller in A+/T+orN+. Compared to NC A- at baseline, these subregions were also smaller in MCI A+. Longitudinally, SCD A+ and MCI A+, and A+/T-/N- and A+/T+orN+, had significantly greater atrophy compared to controls in both anterior and posterior hippocampus. In the entorhinal and parahippocampal cortices, longitudinal atrophy was observed only in MCI A+ compared to NC A-, and in A+/T-/N- and A+/T+orN+ compared to A-/T-/N-. CONCLUSION We found MTL neurodegeneration largely consistent with existing models, suggesting that harmonized MRI volumetry may be used under conditions that are common in clinical multi-center cohorts.
Collapse
Affiliation(s)
- Jonas Alexander Jarholm
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Atle Bjørnerud
- Department of Physics, University of Oslo, Oslo, Norway
- Unit for Computational Radiology and Artificial Intelligence, Oslo University hospital, Oslo, Norway
- Department of Psychology, Faculty for Social Sciences, University of Oslo, Oslo, Norway
| | - Turi Olene Dalaker
- Department of Radiology, Stavanger Medical Imaging Laboratory, Stavanger University Hospital, Stavanger, Norway
| | - Mehdi Sadat Akhavi
- Department of Technology and Innovation, The Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Bjørn Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromso, Norway
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kaja Nordengen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gøril Rolfseng Grøntvedt
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne Nakling
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lisa F. Kalheim
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ina S. Almdahl
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sandra Tecelão
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Sakurama A, Fushimi Y, Nakajima S, Sakata A, Hinoda T, Oshima S, Otani S, Wicaksono KP, Liu W, Maki T, Okada T, Takahashi R, Nakamoto Y. Clinical Application of MPRAGE Wave Controlled Aliasing in Parallel Imaging (Wave-CAIPI): A Comparative Study with MPRAGE GRAPPA. Magn Reson Med Sci 2021; 21:633-647. [PMID: 34602534 PMCID: PMC9618934 DOI: 10.2463/mrms.mp.2021-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Purpose: To compare reliability and elucidate clinical application of magnetization-prepared rapid gradient-echo (MPRAGE) with 9-fold acceleration by using wave-controlled aliasing in parallel imaging (Wave-CAIPI 3 × 3) in comparison to conventional MPRAGE accelerated by using generalized autocalibrating partially parallel acquisition (GRAPPA) 2 × 1. Methods: A total of 26 healthy volunteers and 33 patients were included in this study. Subjects were scanned with two MPRAGEs, GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 acquired in 5 min 21 s and 1 min 42 s, respectively, on a 3T MR scanner. Healthy volunteers underwent additional two MPRAGEs (CAIPI 3 × 3 and GRAPPA 3 × 3). The image quality of the four MPRAGEs was visually evaluated with a 5-point scale in healthy volunteers, and the SNR of four MPRAGEs was also calculated by measuring the phantom 10 times with each MPRAGE. Based on the results of the visual evaluation, voxel-based morphometry (VBM) analyses, including subfield analysis, were performed only for GRAPPA 2 × 1 and Wave-CAIPI 3 × 3. Correlation of segmentation results between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 was assessed. Results: In visual evaluations, scores for MPRAGE GRAPPA 2 × 1 (mean rank: 4.00) were significantly better than those for Wave-CAIPI 3 × 3 (mean rank: 3.00), CAIPI 3 × 3 (mean rank: 1.83), and GRAPPA 3 × 3 (mean rank: 1.17), and scores for Wave-CAIPI 3×3 were significantly better than those for CAIPI 3 × 3 and GRAPPA 3 × 3. Image noise was evident at the center for additional MPRAGE CAIPI 3 × 3 and GRAPPA 3 × 3. The correlation of segmentation results between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 was higher than 0.85 in all VOIs except globus pallidus. Subfield analysis of hippocampus also showed a high correlation between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3. Conclusion: MPRAGE Wave-CAIPI 3 × 3 shows relatively better contrast, despite of its short scan time of 1 min 42 s. The volumes derived from automated segmentation of MPRAGE Wave-CAIPI are considered to be reliable measures.
Collapse
Affiliation(s)
- Azusa Sakurama
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University
| | - Sonoko Oshima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University
| | - Krishna Pandu Wicaksono
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University
| | - Wei Liu
- Siemens Shenzhen Magnetic Resonance Ltd
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University
| | - Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University
| |
Collapse
|
4
|
De Francesco S, Galluzzi S, Vanacore N, Festari C, Rossini PM, Cappa SF, Frisoni GB, Redolfi A. Norms for Automatic Estimation of Hippocampal Atrophy and a Step Forward for Applicability to the Italian Population. Front Neurosci 2021; 15:656808. [PMID: 34262425 PMCID: PMC8273578 DOI: 10.3389/fnins.2021.656808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Hippocampal volume is one of the main biomarkers of Alzheimer's Dementia (AD). Over the years, advanced tools that performed automatic segmentation of Magnetic Resonance Imaging (MRI) T13D scans have been developed, such as FreeSurfer (FS) and ACM-Adaboost (AA). Hippocampal volume is considered abnormal when it is below the 5th percentile of the normative population. The aim of this study was to set norms, established from the Alzheimer's Disease Neuroimaging Initiative (ADNI) population, for hippocampal volume measured with FS v.6.0 and AA tools in the neuGRID platform (www.neugrid2.eu) and demonstrate their applicability for the Italian population. METHODS Norms were set from a large group of 545 healthy controls belonging to ADNI. For each pipeline, subjects with segmentation errors were discarded, resulting in 532 valid segmentations for FS and 421 for AA (age range 56-90 years). The comparability of ADNI and the Italian Brain Normative Archive (IBNA), representative of the Italian general population, was assessed testing clinical variables, neuropsychological scores and normalized hippocampal volumes. Finally, percentiles were validated using the Italian Alzheimer's disease Repository Without Borders (ARWiBo) as external independent data set to evaluate FS and AA generalizability. RESULTS Hippocampal percentiles were checked with the chi-square goodness of fit test. P-values were not significant, showing that FS and AA algorithm distributions fitted the data well. Clinical, neuropsychological and volumetric features were similar in ADNI and IBNA (p > 0.01). Hippocampal volumes measured with both FS and AA were associated with age (p < 0.001). The 5th percentile thresholds, indicating left/right hippocampal atrophy were respectively: (i) below 3,223/3,456 mm3 at 56 years and 2,506/2,415 mm3 at 90 years for FS; (ii) below 4,583/4,873 mm3 at 56 years and 3,831/3,870 mm3 at 90 years for AA. The average volumes computed on 100 cognitively intact healthy controls (CN) selected from ARWiBo were close to the 50th percentiles, while those for 100 AD patients were close to the abnormal percentiles. DISCUSSION Norms generated from ADNI through the automatic FS and AA segmentation tools may be used as normative references for Italian patients with suspected AD.
Collapse
Affiliation(s)
- Silvia De Francesco
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Samantha Galluzzi
- Laboratory of Alzheimer’s Neuroimaging and Epidemiology - LANE, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, National Institute of Health, Rome, Italy
| | - Cristina Festari
- Laboratory of Alzheimer’s Neuroimaging and Epidemiology - LANE, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Paolo Maria Rossini
- Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Stefano F. Cappa
- IRCCS Mondino Foundation, Pavia, Italy
- IUSS Cognitive Neuroscience (ICoN) Center, University School for Advanced Studies, Pavia, Italy
| | - Giovanni B. Frisoni
- Laboratory of Alzheimer’s Neuroimaging and Epidemiology - LANE, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Alberto Redolfi
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
5
|
Lynch KM, Alves JM, Chow T, Clark KA, Luo S, Toga AW, Xiang AH, Page KA. Selective morphological and volumetric alterations in the hippocampus of children exposed in utero to gestational diabetes mellitus. Hum Brain Mapp 2021; 42:2583-2592. [PMID: 33764653 PMCID: PMC8090774 DOI: 10.1002/hbm.25390] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Prior epidemiological studies have found that in utero exposure to gestational diabetes mellitus (GDM) is associated with increased risk for neurodevelopmental disorders. However, brain alterations associated with GDM are not known. The hippocampus is pivotal for cognition and emotional regulation. Therefore, we assessed relationships between in utero exposure to GDM and hippocampal morphology and subfield structure during childhood. One hundred seventeen children aged 7–11 years (57% girls, 57% exposed to GDM), born at Kaiser Permanente Southern California, participated in the BrainChild Study. Maternal GDM status was determined from electronic medical records. Children underwent brain magnetic resonance imaging. Freesurfer 6.0 was used to measure hippocampal and individual hippocampal subfield gray matter volume (mm3). Morphological analyses on the hippocampal surface were carried out using shape analysis. GDM‐exposed children exhibited reduced radial thickness in a small, spatially‐restricted portion of the left inferior body of the hippocampus that corresponds to the CA1 subfield. There was a significant interaction between GDM‐exposure and sex on the right hippocampal CA1 subfield. GDM‐exposed boys had reduced right CA1 volume compared to unexposed boys, but this association was no longer significant after controlling for age. No significant group differences were observed in girls. Our results suggest that GDM‐exposure impacts shape of the left hippocampal CA1 subfield in both boys and girls and may reduce volume of right hippocampal CA1 only in boys. These in‐depth findings illuminate the unique properties of the hippocampus impacted by prenatal GDM‐exposure and could have important implications for hippocampal‐related functions.
Collapse
Affiliation(s)
- Kirsten M Lynch
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Jasmin M Alves
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ting Chow
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Kristi A Clark
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Shan Luo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Arthur W Toga
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Kathleen A Page
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Li L, Pan N, Zhang L, Lui S, Huang X, Xu X, Wang S, Lei D, Li L, Kemp GJ, Gong Q. Hippocampal subfield alterations in pediatric patients with post-traumatic stress disorder. Soc Cogn Affect Neurosci 2021; 16:334-344. [PMID: 33315100 PMCID: PMC7943370 DOI: 10.1093/scan/nsaa162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
The hippocampus, a key structure with distinct subfield functions, is strongly implicated in the pathophysiology of post-traumatic stress disorder (PTSD); however, few studies of hippocampus subfields in PTSD have focused on pediatric patients. We therefore investigated the hippocampal subfield volume using an automated segmentation method and explored the subfield-centered functional connectivity aberrations related to the anatomical changes, in a homogenous population of traumatized children with and without PTSD. To investigate the potential diagnostic value in individual patients, we used a machine learning approach to identify features with significant discriminative power for diagnosis of PTSD using random forest classifiers. Compared to controls, we found significant mean volume reductions of 8.4% and 9.7% in the right presubiculum and hippocampal tail in patients, respectively. These two subfields' volumes were the most significant contributors to group discrimination, with a mean classification accuracy of 69% and a specificity of 81%. These anatomical alterations, along with the altered functional connectivity between (pre)subiculum and inferior frontal gyrus, may underlie deficits in fear circuitry leading to dysfunction of fear extinction and episodic memory, causally important in post-traumatic symptoms such as hypervigilance and re-experience. For the first time, we suggest that hippocampal subfield volumes might be useful in discriminating traumatized children with and without PTSD.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin Xu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lingjiang Li
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L693BX, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
7
|
Hu N, Sun H, Fu G, Zhang W, Xiao Y, Zhang L, Li W, Li Z, Huang G, Tan Y, Sweeney JA, Gong Q, Lui S. Anatomic abnormalities of hippocampal subfields in never-treated and antipsychotic-treated patients with long-term schizophrenia. Eur Neuropsychopharmacol 2020; 35:39-48. [PMID: 32402652 DOI: 10.1016/j.euroneuro.2020.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023]
Abstract
Hippocampal volume deficits have been reported in chronically-treated schizophrenia patients, however, the longer-term effects of antipsychotic medications on hippocampal anatomy are unclear. This case-control study investigated volume differences in hippocampal subfields of never-treated and antipsychotic-treated patients with long-term schizophrenia. High spatial-resolution T1-weighted magnetic resonance images were collected from 29 never-treated and 40 antipsychotic-treated patients with long-term schizophrenia matched for illness duration (all ≥ 5 years), and 40 demographically-matched healthy controls. Hippocampal subfield volumes were measured using FreeSurfer v6.0, compared across groups and between hemispheres, and correlated with clinical features. Volume reductions were found in both patient groups compared to healthy controls in 8 of 26 hippocampal subfields (Cohen's d = 0.46 - 1.17, P = < .001 - .03), and more diffusely and obviously in never-treated than treated patients (Cohen's d = 0.50 - 0.90, P = < .001 - .04). Greater right-than-left volumes were seen in treated patients and healthy controls in 11 of 13 subfields (T = 2.30 - 7.29, P = < .001 - .03), but not in never-treated patients, in whom the volumes were reduced more on the right than on the left. Subfield volumes were negatively correlated with symptom severity and illness duration, and declined with age in never-treated patients. Findings indicate clinically-relevant and age-related volume reductions in hippocampal subfields of never-treated patients with long-term schizophrenia. Broader and greater subfield deficits in never-treated than treated patients, especially in the right hippocampus, suggest that long-term antipsychotic treatment may benefit hippocampal structures over the longer-term course of illness.
Collapse
Affiliation(s)
- Na Hu
- Department of Radiology, West China Hospital of Sichuan University, No 37, Guoxue Alley, Chengdu 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Gui Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhe Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Guoping Huang
- Department of Psychiatry, The Mental Health Center of Sichuan, Mianyang, China
| | - Youguo Tan
- Department of Psychiatry, Zigong Mental Health Center, Zigong, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Alves JM, Luo S, Chow T, Herting M, Xiang AH, Page KA. Sex differences in the association between prenatal exposure to maternal obesity and hippocampal volume in children. Brain Behav 2020; 10:e01522. [PMID: 31903710 PMCID: PMC7010582 DOI: 10.1002/brb3.1522] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Animal studies have shown that male but not female offspring exposed to maternal obesity have abnormal hippocampal development. Similar sex differences were observed in animal models of developmental programming by prenatal stress or maternal diabetes. We aimed to translate this work into humans by examining sex-specific effects of exposure to maternal obesity on hippocampal volume in children. METHODS Eighty-eight children (37 boys and 51 girls) aged 7-11 years completed the study. Maternal prepregnancy body mass index (BMI) was obtained from electronic medical records. A high-resolution anatomical scan was performed using a 3-Tesla magnetic resonance imaging (MRI) scanner. Total hippocampal volume and hippocampal subfield volumes were analyzed using FreeSurfer 6.0. Linear regression was used to investigate sex differences in relationships between maternal prepregnancy BMI and child hippocampal volume. RESULTS Maternal prepregnancy BMI ranged from 19.0 to 50.4 kg/m2 . We observed a significant interaction between maternal prepregnancy BMI and sex on total hippocampal volume (p < .001) such that boys (r = -.39, p = .018) but not girls (r = .11, p = .45) had a significant negative relationship between maternal prepregnancy BMI and total hippocampal volume. This relationship in boys remained significant after adjusting for child and maternal covariates (β = -126.98, p = .012). The sex interactions with prepregnancy BMI were consistently observed in hippocampal subfields CA1 (p = .008), CA2/3 (p = .016), CA4 (p = .002), dentate gyrus (p < .001), and subiculum (p < .001). CONCLUSIONS Our results support findings in animal models and suggest that boys may be more vulnerable to the adverse effects of exposure to maternal obesity on hippocampal development than girls.
Collapse
Affiliation(s)
- Jasmin M. Alves
- Division of EndocrinologyDepartment of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Diabetes and Obesity Research InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Shan Luo
- Division of EndocrinologyDepartment of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Diabetes and Obesity Research InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Ting Chow
- Department of Research and EvaluationPasadenaCAUSA
| | - Megan Herting
- Department of Preventive MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | - Kathleen A. Page
- Division of EndocrinologyDepartment of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Diabetes and Obesity Research InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
9
|
Khlif MS, Werden E, Egorova N, Boccardi M, Redolfi A, Bird L, Brodtmann A. Assessment of longitudinal hippocampal atrophy in the first year after ischemic stroke using automatic segmentation techniques. NEUROIMAGE-CLINICAL 2019; 24:102008. [PMID: 31711030 PMCID: PMC6849411 DOI: 10.1016/j.nicl.2019.102008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
First-year hippocampal atrophy in stroke is more accelerated ipsi-lesionally. Volume estimation is not impacted by hemisphere side, study group, or scan timepoint. Segmentation method-hippocampal size interaction determines volume estimation. FreeSurfer/Subfields and fsl/FIRST segmentations agreed best with manual tracing.
We assessed first-year hippocampal atrophy in stroke patients and healthy controls using manual and automated segmentations: AdaBoost, FIRST (fsl/v5.0.8), FreeSurfer/v5.3 and v6.0, and Subfields (in FreeSurfer/v6.0). We estimated hippocampal volumes in 39 healthy controls and 124 stroke participants at three months, and 38 controls and 113 stroke participants at one year. We used intra-class correlation, concordance, and reduced major axis regression to assess agreement between automated and ‘Manual’ estimations. A linear mixed-effect model was used to characterize hippocampal atrophy. Overall, hippocampal volumes were reduced by 3.9% in first-ever stroke and 9.2% in recurrent stroke at three months post-stroke, with comparable ipsi-and contra-lesional reductions in first-ever stroke. Mean atrophy rates between time points were 0.5% for controls and 1.0% for stroke patients (0.6% contra-lesionally, 1.4% ipsi-lesionally). Atrophy rates in left and right-hemisphere strokes were comparable. All methods revealed significant volume change in first-ever and ipsi-lesional stroke (p < 0.001). Hippocampal volume estimation was not impacted by hemisphere, study group, or scan time point, but rather, by the interaction between the automated segmentation method and hippocampal size. Compared to Manual, Subfields and FIRST recorded the lowest bias. FreeSurfer/v5.3 overestimated volumes the most for large hippocampi, while FIRST was the most accurate in estimating small volumes. AdaBoost performance was average. Our findings suggest that first-year ipsi-lesional hippocampal atrophy rate especially in first-ever stroke, is greater than atrophy rates in healthy controls and contra-lesional stroke. Subfields and FIRST can complementarily be effective in characterizing the hippocampal atrophy in healthy and stroke cohorts.
Collapse
Affiliation(s)
- Mohamed Salah Khlif
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Emilio Werden
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Natalia Egorova
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Marina Boccardi
- LANVIE-Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland; Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alberto Redolfi
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Laura Bird
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Amy Brodtmann
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|