1
|
Zeng X, Li C, Li Z, Tao Z, Li M. Review of research advances in microbial sterilization technologies and applications in the built environment. J Environ Sci (China) 2025; 154:314-348. [PMID: 40049877 DOI: 10.1016/j.jes.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 05/13/2025]
Abstract
As globalization accelerates, microbial contamination in the built environment poses a major public health challenge. Especially since Corona Virus Disease 2019 (COVID-19), microbial sterilization technology has become a crucial research area for indoor air pollution control in order to create a hygienic and safe built environment. Based on this, the study reviews sterilization technologies in the built environment, focusing on the principles, efficiency and applicability, revealing advantages and limitations, and summarizing current research advances. Despite the efficacy of single sterilization technologies in specific environments, the corresponding side effects still exist. Thus, this review highlights the efficiency of hybrid sterilization technologies, providing an in-depth understanding of the practical application in the built environment. Also, it presents an outlook on the future direction of sterilization technology, including the development of new methods that are more efficient, energy-saving, and targeted to better address microbial contamination in the complex and changing built environment. Overall, this study provides a clear guide for selecting technologies to handle microbial contamination in different building environments in the future, as well as a scientific basis for developing more effective air quality control strategies.
Collapse
Affiliation(s)
- Xinran Zeng
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China
| | - Chunhui Li
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China.
| | - Zhenhai Li
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China.
| | - Zhizheng Tao
- SWJTU-Leeds Joint School, Southwest Jiaotong University, Chengdu 610097, China
| | - Mingtong Li
- School of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
2
|
Sachse S, Kraiselburd I, Anastasiou OE, Elsner C, Goretzki SC, Goer S, Koldehoff M, Thomas A, Schoth J, Voigt S, Roß RS, Dittmer U, Meyer F, Schmithausen RM. From Entry to Outbreak in a High School Setting: Clinical and Wastewater Surveillance of a Rare SARS-CoV-2 Variant. Viruses 2025; 17:477. [PMID: 40284920 PMCID: PMC12030855 DOI: 10.3390/v17040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
In December 2021, an outbreak of the SARS-CoV-2 B.1.640.2 variant, potentially originating from Cameroon, was investigated among schoolchildren in Germany. The index case, an adult who had recently returned from a three-week stay in the Republic of Congo, introduced the variant into a school setting via their children, resulting in subsequent transmission within the school and ultimately to a hospital ward. Whole-genome sequencing of viral samples identified both B.1.640.1 and B.1.640.2 lineages. This outbreak highlights the unpredictable nature of emerging SARS-CoV-2 variants and emphasizes the importance of early detection and containment to mitigate transmission to high-risk populations. Notably, wastewater surveillance detected the variant during the study peri-od, reinforcing the utility of wastewater-based epidemiology as a complementary tool for the early warning and containment of novel variants. These findings underline the critical need for timely research and adherence to quarantine measures to enhance outbreak control efforts.
Collapse
Affiliation(s)
- Sven Sachse
- Institute for Artificial Intelligence (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany; (S.S.); (I.K.)
- Department of Hygiene and Environmental Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ivana Kraiselburd
- Institute for Artificial Intelligence (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany; (S.S.); (I.K.)
- Center for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| | | | - Carina Elsner
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Sarah Christina Goretzki
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, Pediatric Infectiology, Pediatric Neurology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Stefan Goer
- Department of Hygiene and Environmental Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Michael Koldehoff
- Department of Hygiene and Environmental Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alexander Thomas
- Institute for Artificial Intelligence (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany; (S.S.); (I.K.)
| | - Jens Schoth
- Emschergenossenschaft Lippeverband (EGLV), 45128 Essen, Germany
| | - Sebastian Voigt
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Rudolf Stephan Roß
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Folker Meyer
- Institute for Artificial Intelligence (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany; (S.S.); (I.K.)
- Center for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| | - Ricarda Maria Schmithausen
- Institute for Artificial Intelligence (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131 Essen, Germany; (S.S.); (I.K.)
- Department of Hygiene and Environmental Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Center for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
3
|
Xu R, Wu F, Shen L, Fan Z, Yu J, Huang Z. Experimental study on bioaerosols behavior and purification measures in a subway compartment. Sci Rep 2024; 14:22082. [PMID: 39333783 PMCID: PMC11436990 DOI: 10.1038/s41598-024-73933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
Bioaerosols in public transportation systems raise critical environmental concerns, seriously threatening passenger health and safety. In this study, we investigate the spread characteristics of bioaerosols in a standard type-B subway compartment using both air sampling and sediment sampling methods. Additionally, without compromising indoor passenger comfort, two self-designed air purification devices, based on intense field dielectric (IFD) and dielectric barrier discharge (DBD) technologies, respectively, are successfully applied for the improvement of the subway air quality. The results show that bioaerosols can propagate rapidly throughout the entire compartment in 5 min via airborne transmission. Under the effect of the symmetric air ducts and compartment structure, the difference in bioaerosol concentration in the air is less than 10% between both ends of the compartment. Concurrent substantial bioaerosol deposition on the ground, seats, and windows underscores the risk of contact transmission. Furthermore, the real-time purification rates of the two devices integrated into the air conditioning system reach 59.40% and 44.98%, respectively. With their demonstrated high efficiency in purifying bioaerosols and modular design featuring low energy consumption, easy cleaning, and reusability, these devices stand out as viable long-term solutions for large traffic vehicles. These research findings provide practical equipment recommendations and installation strategies for optimizing indoor air quality in subways and are applicable to other similar transportation systems.
Collapse
Affiliation(s)
- Renze Xu
- School of Civil Engineering, Changsha University, Changsha, 410022, Hunan, China
| | - Fan Wu
- Key Laboratory of Traffic Safety on Track, School of Traffic & Transportation Engineering, Ministry of Education, Central South University, Changsha, 410075, Hunan, China
- Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha, 410075, Hunan, China
| | - Lian Shen
- School of Civil Engineering, Changsha University, Changsha, 410022, Hunan, China.
| | - Zhiqiang Fan
- Key Laboratory of Traffic Safety on Track, School of Traffic & Transportation Engineering, Ministry of Education, Central South University, Changsha, 410075, Hunan, China
- Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha, 410075, Hunan, China
| | - Jianci Yu
- Key Laboratory of Traffic Safety on Track, School of Traffic & Transportation Engineering, Ministry of Education, Central South University, Changsha, 410075, Hunan, China
- Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha, 410075, Hunan, China
| | - Zhen Huang
- Design Institute of Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
4
|
Luo Q, Liu W, Liao J, Gu Z, Fan X, Luo Z, Zhang X, Hang J, Ou C. COVID-19 transmission and control in land public transport: A literature review. FUNDAMENTAL RESEARCH 2024; 4:417-429. [PMID: 38933205 PMCID: PMC11197583 DOI: 10.1016/j.fmre.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 06/28/2024] Open
Abstract
Land public transport is an important link within and between cities, and how to control the transmission of COVID-19 in land public transport is a critical issue in our daily lives. However, there are still many inconsistent opinions and views about the spread of SARS-CoV-2 in land public transport, which limits our ability to implement effective interventions. The purpose of this review is to overview the literature on transmission characteristics and routes of the epidemic in land public transport, as well as to investigate factors affecting its spread and provide feasible measures to mitigate the infection risk of passengers. We obtained 898 papers by searching the Web of Science, Pubmed, and WHO global COVID database by keywords, and finally selected 45 papers that can address the purpose of this review. Land public transport is a high outbreak area for COVID-19 due to characteristics like crowding, inadequate ventilation, long exposure time, and environmental closure. Different from surface touch transmission and drop spray transmission, aerosol inhalation transmission can occur not only in short distances but also in long distances. Insufficient ventilation is the most important factor influencing long-distance aerosol transmission. Other transmission factors (e.g., interpersonal distance, relative orientation, and ambient conditions) should be noticed as well, which have been summarized in this paper. To address various influencing factors, it is essential to suggest practical and efficient preventive measures. Among these, increased ventilation, particularly the fresh air (i.e., natural ventilation), has proven to effectively reduce indoor infection risk. Many preventive measures are also effective, such as enlarging social distance, avoiding face-to-face orientation, setting up physical partitions, disinfection, avoiding talking, and so on. As research on the epidemic has intensified, people have broken down many perceived barriers, but more comprehensive studies on monitoring systems and prevention measures in land public transport are still needed.
Collapse
Affiliation(s)
- Qiqi Luo
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
- China Meteorological Administration Xiong'an Atmospheric Boundary Layer Key Laboratory, Xiong'an 070001, China
- Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519000, China
| | - Wenbing Liu
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Jiayuan Liao
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Zhongli Gu
- Guangdong Fans-tech Agro Co., Ltd, Yunfu 527300, China
| | - Xiaodan Fan
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Zhiwen Luo
- Welsh School of Architecture, Cardiff University, Cardiff CF10 3XQ, United Kingdom
| | - Xuelin Zhang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
- China Meteorological Administration Xiong'an Atmospheric Boundary Layer Key Laboratory, Xiong'an 070001, China
- Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519000, China
| | - Cuiyun Ou
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
5
|
Ballesteros Álvarez J, Romero Barriuso A, Villena Escribano B, Rodríguez Sáiz A, González-Gaya C. Investigating the effectiveness of a new indoor ventilation model in reducing the spread of disease: A case of sports centres amid the COVID-19 pandemic. Heliyon 2024; 10:e27877. [PMID: 38560668 PMCID: PMC10979208 DOI: 10.1016/j.heliyon.2024.e27877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The ventilation of buildings is crucial to ensure indoor health, especially when demanding physical activities are carried out indoors, and the pandemic has highlighted the need to develop new management methods to ensure adequate ventilation. In Spain, there are no specific ventilation regulations to prevent the spread of pathogens such as the coronavirus. Therefore, it is necessary to have a theoretical tool for calculating occupancy to maintain sports facilities in optimal safety conditions. The proposed theoretical method is based on the analysis of mathematical expressions from European standardisation documents and uses the concentration of CO2 as a bioeffluent. It is also based on the concept of background and critical concentration, which allows its application to be extrapolated to future crises caused by pathogens. This study presents a unique and novel dataset for sports centres. For this purpose, the calculation methods were applied to the data set provided by Mostoles City Council, Spain, during the pandemic years with the highest incidence of COVID-19, when the government introduced the assimilation of COVID-19 sick leave to occupational accidents. The data on this type of sick leave provided by the City Council correspond to the period between March 2020 and February 2022. Similarly, the data on the average use of sports facilities by activity, provided by the Sports Department, correspond to the years 2020 and 2021. In this way, it was possible to verify the effectiveness in preventing the spread of any type of coronavirus. In conclusion, the implementation of a theoretical occupancy calculation method based on the concentration of carbon dioxide as a bioeffluent can be an effective tool for the management of future crises caused by pathogens or hazardous chemicals in the air, and demonstrated its effectiveness in sports centres such as gyms, sports fields, and indoor swimming pools during the COVID-19 pandemic.
Collapse
Affiliation(s)
- J.M. Ballesteros Álvarez
- Department of Architectural Constructions & Construction and Land Engineering, University of Burgos, Burgos, Spain
| | | | - B.M. Villena Escribano
- Departmet of Construction and Manufacturing Engineering, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - A. Rodríguez Sáiz
- Department of Architectural Constructions & Construction and Land Engineering, University of Burgos, Burgos, Spain
| | - C. González-Gaya
- Departmet of Construction and Manufacturing Engineering, Universidad Nacional de Educación a Distancia, Madrid, Spain
| |
Collapse
|
6
|
Horne J, Dunne N, Singh N, Safiuddin M, Esmaeili N, Erenler M, Ho I, Luk E. Building parameters linked with indoor transmission of SARS-CoV-2. ENVIRONMENTAL RESEARCH 2023; 238:117156. [PMID: 37717799 DOI: 10.1016/j.envres.2023.117156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/27/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The rapid spread of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emphasized the importance of understanding and adapting to the indoor remediation of transmissible diseases to decrease the risk for future pandemic threats. While there were many precautions in place to hinder the spread of COVID-19, there has also been a substantial increase of new research on SARS-CoV-2 that can be utilized to further mitigate the transmission risk of this novel virus. This review paper aims to identify the building parameters of indoor spaces that could have considerable influence on the transmission of SARS-CoV-2. The following building parameters have been identified and analyzed, emphasizing their link with the indoor transmission of SARS-CoV-2: temperature and relative humidity, temperature differences between rooms, ventilation rate and access to natural ventilation, occupant density, surface type and finish, airflow direction and speed, air stability, indoor air pollution, central air conditioning systems, capacity of air handling system and HVAC filter efficiency, edge sealing of air filters, room layout and interior design, and compartmentalization of interior space. This paper also explains the interactions of SARS-CoV-2 with indoor environments and its persistence. Furthermore, the modifications of the key building parameters have been discussed for controlling the transmission of SARS-CoV-2 in indoor spaces. Understanding the information provided in this paper is crucial to develop effective health and safety measures that will aid in infection prevention.
Collapse
Affiliation(s)
- Jacqueline Horne
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Nicholas Dunne
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Nirmala Singh
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Md Safiuddin
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada.
| | - Navid Esmaeili
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Merve Erenler
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Ian Ho
- Sysconverge Inc., 7030 Woodbine Avenue, Suite 500, Markham, ON L3R 6G2, Canada
| | - Edwin Luk
- Sysconverge Inc., 7030 Woodbine Avenue, Suite 500, Markham, ON L3R 6G2, Canada
| |
Collapse
|
7
|
Kompatscher K, van der Vossen JMBM, van Heumen SPM, Traversari AAL. Scoping review on the efficacy of filter and germicidal technologies for capture and inactivation of micro-organisms and viruses. J Hosp Infect 2023; 142:39-48. [PMID: 37797657 DOI: 10.1016/j.jhin.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
The COVID-19 (SARS-CoV-2) pandemic increased the focus on preventing contamination with airborne pathogens (e.g. viruses, bacteria, and fungi) by reducing their concentration. Filtration, UV or ionization technologies could contribute to air purification of the indoor environment and inactivation of micro-organisms. The aim of this study was to identify the relevant literature and review the scientific evidence presented on the efficacy of filter and germicidal technologies (e.g. non-physical technologies) in air purification applications used to capture and inactivate micro-organisms and airborne viruses (e.g. SARS-CoV-2, rhinovirus, influenzavirus) in practice. A scoping review was performed to collect literature. Adopting exclusion criteria resulted in a final number of 75 studies to be included in this research. Discussion is presented on inactivation efficiencies of ultraviolet germicidal irradiation (UVGI) and ionization applications in laboratory studies and in practice. Specific attention is given to studies relating the use of UVGI and ionization to inactivation of the SARS-CoV-2 virus. Based on the consulted literature, no unambiguous conclusions can be drawn regarding the effectiveness of air purification technologies in practice. The documented and well-controlled laboratory studies do not adequately represent the practical situation in which the purifier systems are used.
Collapse
Affiliation(s)
- K Kompatscher
- Netherlands Organization for Applied Scientific Research, Department of Building and Energy Systems, Delft, The Netherlands.
| | - J M B M van der Vossen
- Netherlands Organization for Applied Scientific Research, Department of Microbiology and Systems Biology, Leiden, The Netherlands
| | - S P M van Heumen
- Netherlands Organization for Applied Scientific Research, Department of Building and Energy Systems, Delft, The Netherlands
| | - A A L Traversari
- Netherlands Organization for Applied Scientific Research, Department of Building and Energy Systems, Delft, The Netherlands
| |
Collapse
|
8
|
Chen J, Yu Z, Zhou W, Cai H, Jin F, Hu J, Yu E, Xuan L. Effect of temperature and air pressure on the incidence of Bell's palsy in Hangzhou: a distributed lag non-linear analysis. Sci Rep 2023; 13:20424. [PMID: 37993478 PMCID: PMC10665392 DOI: 10.1038/s41598-023-47570-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
The etiology of Bell's palsy (BP) is currently unknown, and the findings from previous studies examining the association between seasonal or meteorological factors and BP have been inconsistent. This research aims to clarify this relationship by analyzing a larger dataset and employing appropriate statistical methods. Data from 5387 patients with BP treated at Zhejiang Provincial Hospital of Traditional Chinese Medicine in Hangzhou, Zhejiang Province, from May 1, 2018, to June 30, 2023, was gathered. We assessed the temporal distribution of meteorological factors and the incidence of BP across seasons and months. A distributed lag non-linear model was used to further investigate the lagged and overall effects of temperature and air pressure on the onset of BP. The temporal distribution of BP incidence revealed the highest average number of cases occurring in December and the lowest in June. A correlation existed between BP episodes and temperature or air pressure. The model revealed a higher relative risk during periods of low temperature and high air pressure, characterized by a time lag effect. This correlation was notably more pronounced in female patients and individuals in the young and middle-aged groups. Our findings suggest that exposure to low temperatures and high air pressure constitute risk factors for BP development.
Collapse
Affiliation(s)
- Junkang Chen
- The First School of Clinical Medicine of Zhejiang, Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Zhexuan Yu
- The First School of Clinical Medicine of Zhejiang, Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Wenhui Zhou
- The First School of Clinical Medicine of Zhejiang, Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Huafeng Cai
- The First School of Clinical Medicine of Zhejiang, Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Fanyuan Jin
- The First School of Clinical Medicine of Zhejiang, Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jinhua Hu
- The First School of Clinical Medicine of Zhejiang, Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Erhui Yu
- The First School of Clinical Medicine of Zhejiang, Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Lihua Xuan
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
9
|
Mack CD, Merson MH, Sims L, Maragakis LL, Davis R, Tai CG, Meisel P, Grad YH, Ho DD, Anderson DJ, LeMay C, DiFiori J. The "Bubble": What Can Be Learned from the National Basketball Association (NBA)'s 2019-20 Season Restart in Orlando during the COVID-19 Pandemic. J Appl Lab Med 2023; 8:1017-1027. [PMID: 37902472 DOI: 10.1093/jalm/jfad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND The National Basketball Association (NBA) suspended operations in response to the COVID-19 pandemic in March 2020. To safely complete the 2019-20 season, the NBA created a closed campus in Orlando, Florida, known as the NBA "Bubble." More than 5000 individuals lived, worked, and played basketball at a time of high local prevalence of SARS-CoV-2. METHODS Stringent protocols governed campus life to protect NBA and support personnel from contracting COVID-19. Participants quarantined before departure and upon arrival. Medical and social protocols required that participants remain on campus, test regularly, physically distance, mask, use hand hygiene, and more. Cleaning, disinfection, and air filtration was enhanced. Campus residents were screened daily and confirmed cases of COVID-19 were investigated. RESULTS In the Bubble population, 148 043 COVID-19 reverse transcriptase PCR (RT-PCR) tests were performed across approximately 5000 individuals; Orlando had a 4% to 15% test positivity rate in this timeframe. There were 44 COVID-19 cases diagnosed either among persons during arrival quarantine or in non-team personnel while working on campus after testing but before receipt of a positive result. No cases of COVID-19 were identified among NBA players or NBA team staff living in the Bubble once cleared from quarantine. CONCLUSIONS Drivers of success included the requirement for players and team staff to reside and remain on campus, well-trained compliance monitors, unified communication, layers of protection between teams and the outside, activation of high-quality laboratory diagnostics, and available mental health services. An emphasis on data management, evidence-based decision-making, and the willingness to evolve protocols were instrumental to successful operations. These lessons hold broad applicability for future pandemic preparedness efforts.
Collapse
Affiliation(s)
| | - Michael H Merson
- Duke University Duke Global Health Institute, Durham, NC, United States
| | - Leroy Sims
- National Basketball Association Player Health, New York, NY, United States
| | - Lisa L Maragakis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel Davis
- National Basketball Association Player Health, New York, NY, United States
| | | | - Peter Meisel
- National Basketball Association Player Health, New York, NY, United States
| | - Yonatan H Grad
- Harvard University T.H. Chan School of Public Health, Boston, MA, United States
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Deverick J Anderson
- Duke University Center for Antimicrobial Stewardship and Infection Prevention, Durham, NC, United States
| | | | - John DiFiori
- National Basketball Association Player Health, New York, NY, United States
- Hospital for Special Surgery Primary Sports Medicine, New York, NY, United States
| |
Collapse
|
10
|
Baskoy M, Cetin O, Koylan S, Khan Y, Tuncel G, Erguder TH, Unalan HE. MXene-Decorated Nylon Mesh Filters for Improvement of Indoor Air Quality by PM 2.5 Filtration. ACS OMEGA 2023; 8:23465-23476. [PMID: 37426223 PMCID: PMC10323941 DOI: 10.1021/acsomega.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Air pollution is a problem that is increasing day by day and poses a threat on a global scale. Particulate matter (PM) is one of the air pollutants that is the biggest concern regarding air quality. In order to control PM pollution, highly effective air filters are required. This is especially necessary for PM with a diameter of less than 2.5 micrometers (PM2.5), which poses a health risk to humans. In this study, we demonstrate for the first time the use of a two-dimensional titanium carbide (Ti3C2) MXene nanosheets-decorated nylon mesh (MDNM) as a low cost and highly efficient PM2.5 filter. This study develops a proof-of-concept method to capture PM2.5. Thanks to their high specific surface area and active surface-terminating groups, conductive MXene nanosheets have made nylon mesh filters promising candidates for air filtration. The developed filters used electrostatic force to capture PM2.5 and showed high removal efficiency (90.05%) when an ionizer was used and under an applied voltage of 10 V, while a commercial high-efficiency particulate air (HEPA) filter had a removal efficiency of 91.03% measured under identical conditions. The proposed filters, which stand out with their low energy consumption, low pressure drop (∼14 Pa), and cost-effectiveness, have the potential to be a strong competitor to conventional PM filter systems used in many fields.
Collapse
Affiliation(s)
- Melek
Hazal Baskoy
- Department
of Environmental Engineering, Middle East
Technical University (METU), 06800 Ankara, Turkey
| | - Oyku Cetin
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Serkan Koylan
- Quantum
Solid State Physics (QSP), KU Leuven, Celestijnenlaan 220D, Leuven 3001, Belgium
| | - Yaqoob Khan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Gurdal Tuncel
- Department
of Environmental Engineering, Middle East
Technical University (METU), 06800 Ankara, Turkey
| | - Tuba Hande Erguder
- Department
of Environmental Engineering, Middle East
Technical University (METU), 06800 Ankara, Turkey
| | - Husnu Emrah Unalan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University (METU), 06800 Ankara, Turkey
| |
Collapse
|
11
|
Takamure K, Iwatani Y, Amano H, Yagi T, Uchiyama T. Inactivation characteristics of a 280 nm Deep-UV irradiation dose on aerosolized SARS-CoV-2. ENVIRONMENT INTERNATIONAL 2023; 177:108022. [PMID: 37301046 PMCID: PMC10241504 DOI: 10.1016/j.envint.2023.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
A non-filter virus inactivation unit was developed that can control the irradiation dose of aerosolized viruses by controlling the lighting pattern of a 280 nm deep-UV (DUV)-LED and the air flowrate. In this study, the inactivation properties of aerosolized SARS-CoV-2 were quantitatively evaluated by controlling the irradiation dose to the virus inside the inactivation unit. The RNA concentration of SARS-CoV-2 remained constant when the total irradiation dose of DUV irradiation to the virus exceeded 16.5 mJ/cm2. This observation suggests that RNA damage may occur in regions below the detection threshold of RT-qPCR assay. However, when the total irradiation dose was less than 16.5 mJ/cm2, the RNA concentration monotonically increased with a decreasing LED irradiation dose. However, the nucleocapsid protein concentration of SARS-CoV-2 was not predominantly dependent on the LED irradiation dose. The plaque assay showed that 99.16% of the virus was inactivated at 8.1 mJ/cm2 of irradiation, and no virus was detected at 12.2 mJ/cm2 of irradiation, resulting in a 99.89% virus inactivation rate. Thus, an irradiation dose of 23% of the maximal irradiation capacity of the virus inactivation unit can activate more than 99% of SARS-CoV-2. These findings are expected to enhance versatility in various applications. The downsizing achieved in our study renders the technology apt for installation in narrow spaces, while the enhanced flowrates establish its viability for implementation in larger facilities.
Collapse
Affiliation(s)
- Kotaro Takamure
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan.
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan
| | - Hiroshi Amano
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya 466-0065, Japan
| | - Tomomi Uchiyama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Saeedi R, Ahmadi E, Hassanvand MS, Mohasel MA, Yousefzadeh S, Safari M. Implemented indoor airborne transmission mitigation strategies during COVID-19: a systematic review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:11-20. [PMID: 37152068 PMCID: PMC9968468 DOI: 10.1007/s40201-023-00847-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/02/2023] [Indexed: 05/09/2023]
Abstract
The COVID-19 pandemic has inflicted major economic and health burdens across the world. On the other hand, the potential airborne transmission of SARS-COV-2 via air can deeply undermine the effectiveness of countermeasures against spreading the disease. Therefore, there is an intense focus to look for ways to mitigate the COVID-19 spread within various indoor settings. This work systematically reviewed articles regarding airborne transmission of SARS-COV2 in various indoor settings since the onset of the pandemic. The systematic search was performed in Scopus, Web of Science, and PubMed databases and has returned 19 original articles carefully screened with regard to inclusion and exclusion criteria. The results showed that the facilities, such as dormitories and classrooms, received the most attention followed by office buildings, healthcare facilities, residential buildings, and other potential enclosed spaces such as a metro wagon. Besides, the majority of the studies were conducted experimentally while other studies were done using computer simulations. United States (n = 5), Spain (n = 4) and China (n = 3) were the top three countries based on the number of performed research. Ventilation rate was the most influential parameter in controlling the infection spread. CO2 was the primary reference for viral spread in the buildings. The use of natural ventilation or a combination of mechanical and natural ventilations was found to be highly effective in the studies. The current work helps in furthering research on effective interventions to improve indoor air quality and control the spread of COVID-19 and other respiratory diseases. Supplementary information The online version contains supplementary material available at 10.1007/s40201-023-00847-0.
Collapse
Affiliation(s)
- Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ahmadi
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Abtahi Mohasel
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Yousefzadeh
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Safari
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
de Crane D’Heysselaer S, Parisi G, Lisson M, Bruyère O, Donneau AF, Fontaine S, Gillet L, Bureau F, Darcis G, Thiry E, Ducatez M, Snoeck CJ, Zientara S, Haddad N, Humblet MF, Ludwig-Begall LF, Daube G, Thiry D, Misset B, Lambermont B, Tandjaoui-Lambiotte Y, Zahar JR, Sartor K, Noël C, Saegerman C, Haubruge E. Systematic Review of the Key Factors Influencing the Indoor Airborne Spread of SARS-CoV-2. Pathogens 2023; 12:382. [PMID: 36986304 PMCID: PMC10053454 DOI: 10.3390/pathogens12030382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been plaguing the world since late 2019/early 2020 and has changed the way we function as a society, halting both economic and social activities worldwide. Classrooms, offices, restaurants, public transport, and other enclosed spaces that typically gather large groups of people indoors, and are considered focal points for the spread of the virus. For society to be able to go "back to normal", it is crucial to keep these places open and functioning. An understanding of the transmission modes occurring in these contexts is essential to set up effective infection control strategies. This understanding was made using a systematic review, according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement (PRISMA) 2020 guidelines. We analyze the different parameters influencing airborne transmission indoors, the mathematical models proposed to understand it, and discuss how we can act on these parameters. Methods to judge infection risks through the analysis of the indoor air quality are described. Various mitigation measures are listed, and their efficiency, feasibility, and acceptability are ranked by a panel of experts in the field. Thus, effective ventilation procedures controlled by CO2-monitoring, continued mask wearing, and a strategic control of room occupancy, among other measures, are put forth to enable a safe return to these essential places.
Collapse
Affiliation(s)
| | - Gianni Parisi
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), FARAH Research Centre, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Maxime Lisson
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Olivier Bruyère
- Division of Public Health, Epidemiology and Health Economics, Faculty of Medicine, University of Liège, 4000 Liège, Belgium
| | | | - Sebastien Fontaine
- Institute for Research in Social Sciences (IRSS), Faculty of Social Sciences, University of Liege, 4000 Liège, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, University of Liege, 4000 Liège, Belgium
| | - Gilles Darcis
- Infectious Diseases Department, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, FARAH Research Centre, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Mariette Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 31000 Toulouse, France
| | - Chantal J. Snoeck
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Stéphan Zientara
- UMR1161 Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, Anses, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Nadia Haddad
- UMR BIPAR 956, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Marie-France Humblet
- Department of Occupational Safety and Health, University of Liege, 4000 Liege, Belgium
| | - Louisa F. Ludwig-Begall
- Veterinary Virology and Animal Viral Diseases, FARAH Research Centre, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Georges Daube
- Laboratoire de Microbiologie des Denrées Alimentaires, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Damien Thiry
- Bacteriology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| | - Benoît Misset
- Service des Soins Intensifs, CHU Sart Tilman, Department des Sciences Cliniques, University of Liège, 4000 Liege, Belgium
| | - Bernard Lambermont
- Service des Soins Intensifs, CHU Sart Tilman, Department des Sciences Cliniques, University of Liège, 4000 Liege, Belgium
| | - Yacine Tandjaoui-Lambiotte
- Laboratoire Hypoxie and Poumon INSERM U1272, Service de Réanimation Médico-Chirurgicale, CHU Avicenne, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
| | | | - Kevin Sartor
- Planification: Energie—Environnement, Département d’Aérospatiale et Mécanique, Systèmes Énergétiques, University of Liège, 4000 Liège, Belgium
| | - Catherine Noël
- Department of Occupational Safety and Health, University of Liege, 4000 Liege, Belgium
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), FARAH Research Centre, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Eric Haubruge
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
14
|
Sharshir SW, Elhelow A, Kabeel A, Hassanien AE, Kabeel AE, Elhosseini M. Deep neural network prediction of modified stepped double-slope solar still with a cotton wick and cobalt oxide nanofluid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90632-90655. [PMID: 35871191 PMCID: PMC9722999 DOI: 10.1007/s11356-022-21850-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
This research work intends to enhance the stepped double-slope solar still performance through an experimental assessment of combining linen wicks and cobalt oxide nanoparticles to the stepped double-slope solar still to improve the water evaporation and water production. The results illustrated that the cotton wicks and cobalt oxide (Co3O4) nanofluid with 1wt% increased the hourly freshwater output (HP) and instantaneous thermal efficiency (ITE). On the other hand, this study compares four machine learning methods to create a prediction model of tubular solar still performance. The methods developed and compared are support vector regressor (SVR), decision tree regressor, neural network, and deep neural network based on experimental data. This problem is a multi-output prediction problem which is HP and ITE. The prediction performance for the SVR was the lowest, with 70 (ml/m2 h) mean absolute error (MAE) for HP and 4.5% for ITE. Decision tree regressor has a better prediction for HP with 33 (ml/m2 h) MAE and almost the same MAE for ITE. Neural network has a better prediction for HP with 28 (ml/m2 h) MAE and a bit worse prediction for ITE with 5.7%. The best model used the deep neural network with 1.94 (ml/m2 h) MAE for HP and 0.67% MAE for ITE.
Collapse
Affiliation(s)
- Swellam Wafa Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed Elhelow
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, 35516, Mansoura, Egypt
| | - Ahmed Kabeel
- Electronics and Communication Engineering Department, Higher Institute of Engineering and Technology, New Damietta, Egypt
| | - Aboul Ella Hassanien
- Faculty of Computers & Information, Information Technology Department, Cairo University, Cairo, Egypt
- Faculty of Computers & AI, Scientific Research Group in Egypt (SRGE), Cairo University, Cairo, Egypt
| | - Abd Elnaby Kabeel
- Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt
- Faculty of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Mostafa Elhosseini
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, 35516, Mansoura, Egypt
- College of Computer Science and Engineering, Taibah University, 46421, Yanbu, Saudi Arabia
| |
Collapse
|
15
|
Mrochen DM, Miebach L, Skowski H, Bansemer R, Drechsler CA, Hofmanna U, Hein M, Mamat U, Gerling T, Schaible U, von Woedtke T, Bekeschus S. Toxicity and virucidal activity of a neon-driven micro plasma jet on eukaryotic cells and a coronavirus. Free Radic Biol Med 2022; 191:105-118. [PMID: 36041652 PMCID: PMC9420207 DOI: 10.1016/j.freeradbiomed.2022.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Plasma medicine is a developing field that utilizes the effects of cold physical plasma on biological substrates for therapeutic purposes. Approved plasma technology is frequently used in clinics to treat chronic wounds and skin infections. One mode of action responsible for beneficial effects in patients is the potent antimicrobial activity of cold plasma systems, which is linked to their unique generation of a plethora of reactive oxygen and nitrogen species (ROS). During the SARS-CoV-2 pandemic, it became increasingly clear that societies need novel ways of passive and active protection from viral airway infections. Plasma technology may be suitable for superficial virus inactivation. Employing an optimized neon-driven micro plasma jet, treatment time-dependent ROS production and cytotoxic effects to different degrees were found in four different human cell lines with respect to their metabolic activity and viability. Using the murine hepatitis virus (MHV), a taxonomic relative of human coronaviruses, plasma exposure drastically reduced the number of infected murine fibroblasts by up to 3000-fold. Direct plasma contact (conductive) with the target maximized ROS production, cytotoxicity, and antiviral activity compared to non-conductive treatment with the remote gas phase only. Strikingly, antioxidant pretreatment reduced but not abrogated conductive plasma exposure effects, pointing to potential non-ROS-related mechanisms of antiviral activity. In summary, an optimized micro plasma jet showed antiviral activity and cytotoxicity in human cells, which was in part ROS-dependent. Further studies using more complex tissue models are needed to identify a safe dose-effect window of antiviral activity at modest toxicity.
Collapse
Affiliation(s)
- Daniel M Mrochen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General, Visceral, Vascular, and Thoracic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Henry Skowski
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Robert Bansemer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Chiara A Drechsler
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Obstetrics and Gynecology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Ulfilas Hofmanna
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Manuel Hein
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany
| | - Uwe Mamat
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany
| | - Torsten Gerling
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Ulrich Schaible
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany.
| |
Collapse
|
16
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Cumulative effects of air pollution and climate drivers on COVID-19 multiwaves in Bucharest, Romania. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 166:368-383. [PMID: 36034108 PMCID: PMC9391082 DOI: 10.1016/j.psep.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.
Collapse
Key Words
- 222Rn
- 222Rn, Radon
- AOD, Total Aerosol Optical Depth at 550 nm
- Aerosol Optical Depth (AOD)
- CAMS, Copernicus Atmosphere Monitoring Service
- CO, Carbon monoxide
- COVID, 19 Coronavirus Disease 2019
- COVID-19 disease
- Climate variables
- DNC, Daily New COVID-19 positive cases
- DND, Daily New COVID-19 Deaths
- MERS, CoV Middle East respiratory syndrome coronavirus
- NO2, Nitrogen dioxide
- NOAA, National Oceanic and Atmospheric Administration U.S.A.
- O3, Ozone
- Outdoor air pollutants
- PBL, Planetary Boundary Layer height
- PM, Particulate Matter: PM1(1 µm), PM2.5 (2.5 µm) and PM10(10.0 µm) diameter
- RH, Air relative humidity
- SARS, CoV Severe Outdoor Respiratory Syndrome Coronavirus
- SARS, CoV-2 Severe Outdoor Respiratory Syndrome Coronavirus 2
- SI, Surface solar global irradiance
- SO2, Sulfur dioxide
- Synoptic meteorological circulation
- T, Air temperature at 2 m height
- p, Air pressure
- w, Wind speed intensity
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| |
Collapse
|
17
|
Ferrari S, Blázquez T, Cardelli R, Puglisi G, Suárez R, Mazzarella L. Ventilation strategies to reduce airborne transmission of viruses in classrooms: A systematic review of scientific literature. BUILDING AND ENVIRONMENT 2022; 222:109366. [PMID: 35818484 PMCID: PMC9259197 DOI: 10.1016/j.buildenv.2022.109366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The recent pandemic due to SARS-CoV-2 has brought to light the need for strategies to mitigate contagion between human beings. Apart from hygiene measures and social distancing, air ventilation highly prevents airborne transmission within enclosed spaces. Among others, educational environments become critical in strategic planning to control the spread of pathogens and viruses amongst the population, mainly in cold conditions. In the event of a virus outbreak - such as COVID or influenza - many school classrooms still lack the means to guarantee secure and healthy environments. The present review examines school contexts that implement air ventilation strategies to reduce the risk of contagion between students. The analysed articles present past experiences that use either natural or mechanical systems assessed through mathematical models, numerical models, or full-scale experiments. For naturally ventilated classrooms, the studies highlight the importance of the architectural design of educational spaces and propose strategies for aeration control such as CO2-based control and risk-infection control. When it comes to implementing mechanical ventilation in classrooms, different systems with different airflow patterns are assessed based on their ability to remove airborne pathogens considering parameters like the age of air and the generation of airflow streamlines. Moreover, studies report that programmed mechanical ventilation systems can reduce risk-infection during pandemic events. In addition to providing a systematic picture of scientific studies in the field, the findings of this review can be a valuable reference for school administrators and policymakers to implement the best strategies in their classroom settings towards reducing infection risks.
Collapse
Affiliation(s)
- S Ferrari
- Dept. of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy
| | - T Blázquez
- Dept. of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy
| | - R Cardelli
- Dept. of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy
| | - G Puglisi
- Dept. of Energy Efficiency Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - R Suárez
- Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Sevilla, Spain
| | - L Mazzarella
- Dept. of Energy, Politecnico di Milano, Milano, Italy
| |
Collapse
|
18
|
Prophylactic Architecture: Formulating the Concept of Pandemic-Resilient Homes. BUILDINGS 2022. [DOI: 10.3390/buildings12070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lockdown instituted during the COVID-19 pandemic has drawn the world’s attention to the importance of homes as integrated structures for practicing all aspects of life. The home has been transformed from a mere place to live into a complete piece of infrastructure accommodating all activities of life, including study, work, shopping, exercise, entertainment, and even telehealth. Although quarantines were necessary to protect against viral infection, we have faced social and psychological challenges due to the failure of the current home design to accommodate the new lockdown lifestyle during the pandemic. Thus, this study aims to set a foundation for the development and design of resilient homes in a post-quarantine world by establishing a comprehensive framework for quarantine-resilient homes. The framework was established on the basis of the relevant literature and proposals from architects and experts. It brings a perspective to the future requirements of homes so as to provide architects, stakeholders, and policymakers with the appropriate knowledge to mitigate the impact of lockdowns on mental health and well-being in residential buildings by focusing on the physical and architectural environment.
Collapse
|
19
|
Zhao X, Liu S, Yin Y, Zhang T(T, Chen Q. Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods. INDOOR AIR 2022; 32:e13056. [PMID: 35762235 PMCID: PMC9349854 DOI: 10.1111/ina.13056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 05/22/2023]
Abstract
Since the outbreak of COVID-19 in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) has spread worldwide. This study summarized the transmission mechanisms of COVID-19 and their main influencing factors, such as airflow patterns, air temperature, relative humidity, and social distancing. The transmission characteristics in existing cases are providing more and more evidence that SARS CoV-2 can be transmitted through the air. This investigation reviewed probabilistic and deterministic research methods, such as the Wells-Riley equation, the dose-response model, the Monte-Carlo model, computational fluid dynamics (CFD) with the Eulerian method, CFD with the Lagrangian method, and the experimental approach, that have been used for studying the airborne transmission mechanism. The Wells-Riley equation and dose-response model are typically used for the assessment of the average infection risk. Only in combination with the Eulerian method or the Lagrangian method can these two methods obtain the spatial distribution of airborne particles' concentration and infection risk. In contrast with the Eulerian and Lagrangian methods, the Monte-Carlo model is suitable for studying the infection risk when the behavior of individuals is highly random. Although researchers tend to use numerical methods to study the airborne transmission mechanism of COVID-19, an experimental approach could often provide stronger evidence to prove the possibility of airborne transmission than a simple numerical model. All in all, the reviewed methods are helpful in the study of the airborne transmission mechanism of COVID-19 and epidemic prevention and control.
Collapse
Affiliation(s)
- Xingwang Zhao
- School of Energy and EnvironmentSoutheast UniversityNanjingChina
| | - Sumei Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
| | - Yonggao Yin
- School of Energy and EnvironmentSoutheast UniversityNanjingChina
- Engineering Research Center of Building Equipment, Energy, and EnvironmentMinistry of EducationNanjingChina
| | - Tengfei (Tim) Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
| | - Qingyan Chen
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| |
Collapse
|
20
|
de la Hoz‐Torres ML, Aguilar AJ, Costa N, Arezes P, Ruiz DP, Martínez‐Aires MD. Reopening higher education buildings in post-epidemic COVID-19 scenario: monitoring and assessment of indoor environmental quality after implementing ventilation protocols in Spain and Portugal. INDOOR AIR 2022; 32:e13040. [PMID: 35622718 PMCID: PMC9325358 DOI: 10.1111/ina.13040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 05/27/2023]
Abstract
Post-epidemic protocols have been implemented in public buildings to keep indoor environments safe. However, indoor environmental conditions are affected by this decision, which also affect the occupants of buildings. This fact has major implications in educational buildings, where the satisfaction and learning performance of students may also be affected. This study investigates the impact of post-epidemic protocols on indoor environmental conditions in higher education buildings of one Portuguese and one Spanish university. A sensor monitoring campaign combined with a simultaneous questionnaire was conducted during the reopening of the educational buildings. Results showed that although renewal air protocols were effective and the mean CO2 concentration levels remained low (742 ppm and 519 ppm in Portugal and Spain universities, respectively), students were dissatisfied with the current indoor environmental conditions. Significant differences were also found between the responses of Portuguese and Spanish students. Indeed, Spanish students showed warmer preferences (thermal neutrality = 23.3℃) than Portuguese students (thermal neutrality = 20.7℃). In terms of involved indoor factors, the obtained data showed significant correlations (p < 0.001) between acoustic factors and overall satisfaction in the Portuguese students (ρ = 0.540) and between thermal factors and overall satisfaction in the Spanish students (ρ = 0.522). Therefore, indoor environmental conditions should be improved by keeping spaces safe while minimizing the impact of post-epidemic protocols on student learning performance.
Collapse
Affiliation(s)
| | | | - Nélson Costa
- ALGORITMI Research CenterSchool of EngineeringUniversity of MinhoGuimarãesPortugal
| | - Pedro Arezes
- ALGORITMI Research CenterSchool of EngineeringUniversity of MinhoGuimarãesPortugal
| | - Diego P. Ruiz
- Department of Applied PhysicsUniversity of GranadaGranadaSpain
| | | |
Collapse
|
21
|
Fabiano B, Hailwood M, Thomas P. Safety, environmental and risk management related to Covid-19. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 160:397-399. [PMID: 35194340 PMCID: PMC8849899 DOI: 10.1016/j.psep.2022.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Bruno Fabiano
- University of Genoa, DICCA - Department of Civil, Chemical and Environmental Engineering, Genoa, Italy
| | - Mark Hailwood
- LUBW Landesanstalt für Umwelt Baden-Württemberg, Karlsruhe, Germany
| | - Philip Thomas
- University of Bristol, Faculty of Engineering, Bristol, United Kingdom
| |
Collapse
|
22
|
Comparison of Indoor Environment and Energy Consumption before and after Spread of COVID-19 in Schools in Japanese Cold-Climate Region. ENERGIES 2022. [DOI: 10.3390/en15051781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A report released by the WHO indicates that aerosols from infected people are one of the major sources of the spread of COVID-19. Therefore, as the COVID-19 infection caused by the SARS-CoV-2 virus spreads, it has become necessary to reconsider the design and operation of buildings. Inside school buildings in cold regions, not only is it not easy to increase ventilation during the winter, but it may also be difficult for students to attend classes while wearing masks during the summer because such buildings are not equipped with air-conditioning systems. In short, school buildings in cold climates have more problems than those in warm climates. We report on the results of indoor environmental measurement using our developed CO2-concentration meters, a questionnaire survey on students’ feeling of being hot or cold (i.e., ‘thermal sensation’), and a comparison of energy consumption before and after the spread of COVID-19 infection in schools in Sapporo, Japan, a cold-climate area. The results indicate that (1) more than 70% of the students participated in window ventilation by the CO2 meter, and (2) a relatively good indoor environment was maintained through the efforts of teachers and students. However, we also found that (1) 90% of the students felt hot in summer and (2) 40% felt cold in winter, (3) energy efficiency worsened by 7% due to increased ventilation, and (4) air quality was not as clean as desired during the coldest months of the year. Therefore, investment in insulation and air conditioning systems for school buildings is needed.
Collapse
|
23
|
Xu F, Gao Z. Study on indoor air quality and fresh air energy consumption under different ventilation modes in 24-hour occupied bedrooms in Nanjing, using Modelica-based simulation. ENERGY AND BUILDINGS 2022; 257:111805. [PMID: 36570678 PMCID: PMC9758414 DOI: 10.1016/j.enbuild.2021.111805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/31/2023]
Abstract
COVID-19 has forced people to spend more time working and studying at home; in particular, people who share an apartment stay in their respective bedrooms almost all day. This study investigated the impact of ventilation modes on the indoor air quality (IAQ) of 24-hour occupied bedrooms and provided ventilation suggestions for people who stay in their bedrooms for a long time during the pandemic compared with the study of traditional apartment ventilation. In addition, the fresh air energy consumption of different ventilation modes was compared to help residents save energy. In summer, a window-opening ratio of 25% (0.3 m2) could effectively improve IAQ. However, it is not recommended to use natural ventilation in winter because the outdoor PM2.5 concentration is too high. Moreover, the fresh air energy consumption for the automatic control window-opening ratio was 1/5 of that for a window-opening ratio of 25%. In the whole summer, it can save 196.1 kW·h compared to a fixed window-opening ratio of 25%. Fresh air systems could greatly improve IAQ and lower energy consumption regardless of the season. However, the automatic-control window-opening ratio mode has lower energy consumption, which is approximately 0.37 times that of fresh air systems in summer.
Collapse
Affiliation(s)
- Fusuo Xu
- School of Architecture and Urban Planning, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu Province 210093, China
| | - Zhi Gao
- School of Architecture and Urban Planning, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu Province 210093, China
| |
Collapse
|
24
|
Vlaskin MS. Review of air disinfection approaches and proposal for thermal inactivation of airborne viruses as a life-style and an instrument to fight pandemics. APPLIED THERMAL ENGINEERING 2022; 202:117855. [PMID: 34867067 PMCID: PMC8628600 DOI: 10.1016/j.applthermaleng.2021.117855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 (Coronavirus Disease 2019) pandemic highlighted the importance of air biosecurity because SARS-CoV-2 is mainly transmitted from person to person via airborne droplets. Preventing infectious droplets from entering the body is one of the best ways to protect against infection. This paper reviews the transmission patterns of airborne pathogens and air disinfection methods. A particular emphasis is put on studies devoted to the thermal inactivation of viruses. These reviews reveal that air heat treatment has not been seriously considered as a possible air disinfection approach. Simple calculations show that the energy input required for thermal disinfection of human's air daily consumption is almost the same as for daily water consumption (by heat treatment from room temperature to 100 °C). Moreover, it is possible to organize a continuous heat recovery from the air already heated during disinfection to the inlet air, thus significantly increasing the energy efficiency. Therefore, I propose a solution for the thermal inactivation of airborne pathogens based on air heating and its subsequent cooling in a heat exchanger with heat recovery. Such a solution could be used to create mobile personal and stationary indoor air disinfectors, as well as heating, ventilation, and air conditioning systems. Thermal disinfection of air to breathe might one day be part of people's daily life like thermal disinfection of drinking water. Aside from limiting infectious disease transmission, thermal inactivation might be the basis for developing inhaled vaccines using thermally inactivated whole pathogens.
Collapse
Affiliation(s)
- Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow 125412, Russia
| |
Collapse
|
25
|
Data-Driven Models for Estimating Dust Loading Levels of ERV HEPA Filters. SUSTAINABILITY 2021. [DOI: 10.3390/su132413643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With increasing global concerns regarding indoor air quality (IAQ) and air pollution, concerns about regularly replacing ventilation devices, particularly high-efficiency particulate air (HEPA) filters, have increased. However, users cannot easily determine when to replace filters. This paper proposes models to estimate the dust loading levels of HEPA filters for an energy-recovery ventilation system that performs air purification. The models utilize filter pressure drops, the revolutions per minute (RPM) of supply fans, and rated airflow modes as variables for regression equations. The obtained results demonstrated that the filter dust loading level could be estimated once the filter pressure drops and RPM, and voltage for the rated airflow were input in the models, with a root mean square error of 5.1–12.9%. Despite current methods using fewer experimental datasets than the proposed models, our findings indicate that these models could be efficiently used in the development of filter replacement alarms to help users decide when to replace their filters.
Collapse
|