1
|
Zayed A, Belhadj N, Ben Khalifa K, Bedoui MH, Valderrama C. Efficient Generalized Electroencephalography-Based Drowsiness Detection Approach with Minimal Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:4256. [PMID: 39001037 PMCID: PMC11244425 DOI: 10.3390/s24134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Drowsiness is a main factor for various costly defects, even fatal accidents in areas such as construction, transportation, industry and medicine, due to the lack of monitoring vigilance in the mentioned areas. The implementation of a drowsiness detection system can greatly help to reduce the defects and accident rates by alerting individuals when they enter a drowsy state. This research proposes an electroencephalography (EEG)-based approach for detecting drowsiness. EEG signals are passed through a preprocessing chain composed of artifact removal and segmentation to ensure accurate detection followed by different feature extraction methods to extract the different features related to drowsiness. This work explores the use of various machine learning algorithms such as Support Vector Machine (SVM), the K nearest neighbor (KNN), the Naive Bayes (NB), the Decision Tree (DT), and the Multilayer Perceptron (MLP) to analyze EEG signals sourced from the DROZY database, carefully labeled into two distinct states of alertness (awake and drowsy). Segmentation into 10 s intervals ensures precise detection, while a relevant feature selection layer enhances accuracy and generalizability. The proposed approach achieves high accuracy rates of 99.84% and 96.4% for intra (subject by subject) and inter (cross-subject) modes, respectively. SVM emerges as the most effective model for drowsiness detection in the intra mode, while MLP demonstrates superior accuracy in the inter mode. This research offers a promising avenue for implementing proactive drowsiness detection systems to enhance occupational safety across various industries.
Collapse
Affiliation(s)
- Aymen Zayed
- Technology and Medical Imaging Laboratory, Faculty of Medicine Monastir, University of Monastir, Monastir 5019, Tunisia
- National Engineering School of Sousse, University of Sousse, BP 264 Erriyadh, Sousse 4023, Tunisia
- Department of Electronics and Microelectronics (SEMi), University of Mons, 7000 Mons, Belgium
| | - Nidhameddine Belhadj
- Laboratory of Electronics and Microelectronics, Faculty of Sciences of Monastir, Monsatir 5019, Tunisia
| | - Khaled Ben Khalifa
- Technology and Medical Imaging Laboratory, Faculty of Medicine Monastir, University of Monastir, Monastir 5019, Tunisia
- Higher Institute of Applied Science and Technology of Sousse, University of Sousse, Sousse 4003, Tunisia
| | - Mohamed Hedi Bedoui
- Technology and Medical Imaging Laboratory, Faculty of Medicine Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Carlos Valderrama
- Department of Electronics and Microelectronics (SEMi), University of Mons, 7000 Mons, Belgium
| |
Collapse
|
2
|
Zhou Y, Chen P, Fan Y, Wu Y. A Multimodal Feature Fusion Brain Fatigue Recognition System Based on Bayes-gcForest. SENSORS (BASEL, SWITZERLAND) 2024; 24:2910. [PMID: 38733015 PMCID: PMC11086115 DOI: 10.3390/s24092910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Modern society increasingly recognizes brain fatigue as a critical factor affecting human health and productivity. This study introduces a novel, portable, cost-effective, and user-friendly system for real-time collection, monitoring, and analysis of physiological signals aimed at enhancing the precision and efficiency of brain fatigue recognition and broadening its application scope. Utilizing raw physiological data, this study constructed a compact dataset that incorporated EEG and ECG data from 20 subjects to index fatigue characteristics. By employing a Bayesian-optimized multi-granularity cascade forest (Bayes-gcForest) for fatigue state recognition, this study achieved recognition rates of 95.71% and 96.13% on the DROZY public dataset and constructed dataset, respectively. These results highlight the effectiveness of the multi-modal feature fusion model in brain fatigue recognition, providing a viable solution for cost-effective and efficient fatigue monitoring. Furthermore, this approach offers theoretical support for designing rest systems for researchers.
Collapse
Affiliation(s)
- You Zhou
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China (Y.F.)
| | - Pukun Chen
- Shanghai Shentian Industrial Co., Ltd., Shanghai 200090, China
- Shanghai Radio Equipment Research Institute, Shanghai 201109, China
| | - Yifan Fan
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China (Y.F.)
| | - Yin Wu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China (Y.F.)
| |
Collapse
|
3
|
Xiong H, Yan Y, Sun L, Liu J, Han Y, Xu Y. Detection of driver drowsiness level using a hybrid learning model based on ECG signals. BIOMED ENG-BIOMED TE 2024; 69:151-165. [PMID: 37823389 DOI: 10.1515/bmt-2023-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVES Fatigue has a considerable impact on the driver's vehicle and even the driver's own operating ability. METHODS An intelligent algorithm is proposed for the problem that it is difficult to classify the degree of drowsiness generated by the driver during the driving process. By studying the driver's electrocardiogram (ECG) during driving, two models were established to jointly classify the ECG signals as awake, stress, and fatigue or drowsiness states for drowsiness levels. Firstly, the deep learning method was used to establish the model_1 to predict the drowsiness of the original ECG, and model_2 was developed using the combination of principal component analysis (PCA) and weighted K-nearest neighbor (WKNN) algorithm to classify the heart rate variability characteristics. Then, the drowsiness prediction results of the two models were weighted according to certain rules, and the hybrid learning model combining dilated convolution and bidirectional long short-term memory network with PCA and WKNN algorithm was established, and the mixed model was denoted as DiCNN-BiLSTM and PCA-WKNN (DBPW). Finally, the validity of the DBPW model was verified by simulation of the public database. RESULTS The experimental results show that the average accuracy, sensitivity and F1 score of the test model in the dataset containing multiple drivers are 98.79, 98.81, and 98.79 % respectively, and the recognition accuracy for drowsiness or drowsiness state is 99.33 %. CONCLUSIONS Using the proposed algorithm, it is possible to identify driver anomalies and provide new ideas for the development of intelligent vehicles.
Collapse
Affiliation(s)
- Hui Xiong
- School of Control Science and Engineering, Tiangong University, Tianjin, China
- Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, China
| | - Yan Yan
- School of Control Science and Engineering, Tiangong University, Tianjin, China
- Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, China
- School of Artificial Intelligence, Tiangong University, Tianjin 300387, China
| | - Lifei Sun
- School of Control Science and Engineering, Tiangong University, Tianjin, China
- Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, China
| | - Jinzhen Liu
- School of Control Science and Engineering, Tiangong University, Tianjin, China
- Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, China
| | - Yuqing Han
- Department of Neurosurgery, Tianjin Xiqing Hospital, Tianjin, China
| | - Yangyang Xu
- Department of Neurosurgery, Tianjin Xiqing Hospital, Tianjin, China
| |
Collapse
|
4
|
Chen X, Niu Y, Zhao Y, Qin X. An Efficient Group Federated Learning Framework for Large-Scale EEG-Based Driver Drowsiness Detection. Int J Neural Syst 2024; 34:2450003. [PMID: 37964570 DOI: 10.1142/s0129065724500035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
To avoid traffic accidents, monitoring the driver's electroencephalogram (EEG) signals to assess drowsiness is an effective solution. However, aggregating the personal data of these drivers may lead to insufficient data usage and pose a risk of privacy breaches. To address these issues, a framework called Group Federated Learning (Group-FL) for large-scale driver drowsiness detection is proposed, which can efficiently utilize diverse client data while protecting privacy. First, by arranging the clients into different levels of groups and gradually aggregating their model parameters from low-level groups to high-level groups, communication and time costs are reduced. In addition, to solve the problem of notable variations in EEG signals among different clients, a global-personalized deep neural network is designed. The global model extracts shared features from various clients, while the personalized model extracts fine-grained features from each client and outputs classification results. Finally, to address special issues such as scale/category imbalance and data pollution, three checking modules are designed for adjusting grouping, evaluating client data, and effectively applying personalized models. Through extensive experimentation, the effectiveness of each component within the framework was validated, and a mean accuracy, F1-score, and Area Under Curve (AUC) of 81.0%, 82.0%, and 87.9% was achieved, respectively, on a publicly available dataset comprising 11 subjects.
Collapse
Affiliation(s)
- Xinyuan Chen
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, P. R. China
| | - Yi Niu
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanna Zhao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, P. R. China
| | - Xue Qin
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
5
|
Hussein RM, Miften FS, George LE. Driver drowsiness detection methods using EEG signals: a systematic review. Comput Methods Biomech Biomed Engin 2023; 26:1237-1249. [PMID: 35983784 DOI: 10.1080/10255842.2022.2112574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Electroencephalography (EEG) is a complex signal that may require several years of training, advanced signal processing, and feature extraction methodologies to interpret correctly. Recently, many methods have been used to extract and classify EEG data. This study reviews 62 papers that used EEG signals to detect driver drowsiness, published between January 2018 and 2022. We extract trends and highlight interesting approaches from this large body of literature to inform future research and formulate recommendations. To find relevant papers published in scientific journals, conferences, and electronic preprint repositories, researchers searched major databases covering the domains of science and engineering. For each investigation, many data items about (1) the data, (2) the channels used, (3) the extraction and classification procedure, and (4) the outcomes were extracted. These items were then analyzed one by one to uncover trends. Our analysis reveals that the amount of EEG data used across studies varies. We saw that more than half the studies used simulation driving experimental. About 21% of the studies used support vector machine (SVM), while 19% used convolutional neural networks (CNN). Overall, we can conclude that drowsiness and fatigue impair driving performance, resulting in drivers who are more exposed to risky situations.
Collapse
Affiliation(s)
- Raed Mohammed Hussein
- Iraqi Commission for Computers and Informatics, Informatics Institute of Postgraduate Studies, Baghdad, Iraq
| | - Firas Sabar Miften
- College of Education for Pure Science, University of Thi-Qar, Nasiriyah, Iraq
| | - Loay E George
- University of Information Technology & Communication, Baghdad, Iraq
| |
Collapse
|
6
|
Soni S, Seal A, Mohanty SK, Sakurai K. Electroencephalography signals-based sparse networks integration using a fuzzy ensemble technique for depression detection. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Macedo JB, Ramos PMS, Maior CBS, Moura MJC, Lins ID, Vilela RFT. Identifying low-quality patterns in accident reports from textual data. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2022:1-13. [PMID: 35980110 DOI: 10.1080/10803548.2022.2111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Accident investigation reports provide useful knowledge to support companies to propose preventive and mitigative measures. However, the information presented in accident report databases is normally large, complex, filled with errors and has missing and/or redundant data. In this article, we propose text mining and natural language processing techniques to investigate low-quality accident reports. We adopted machine learning (ML) to detect and investigate inconsistencies on accident reports. The methodology was applied to 626 documents collected from an actual hydroelectric power company. The initial ML performances indicated data divergences and concerns related to the report structure. Then, the accident database was restructured to a more proper form confirming the supposition about the quality of the reports investigated. The proposed approach can be used as a diagnostic tool to improve the design of accident investigation reports to provide a more useful source of knowledge to support decisions in the safety context.
Collapse
Affiliation(s)
- July B Macedo
- CEERMA - Center for Risk Analysis, Reliability Engineering and Environmental Modeling, Federal University of Pernambuco, Brazil.,Department of Production Engineering, Federal University of Pernambuco, Brazil
| | - Plinio M S Ramos
- CEERMA - Center for Risk Analysis, Reliability Engineering and Environmental Modeling, Federal University of Pernambuco, Brazil.,Department of Production Engineering, Federal University of Pernambuco, Brazil
| | - Caio B S Maior
- CEERMA - Center for Risk Analysis, Reliability Engineering and Environmental Modeling, Federal University of Pernambuco, Brazil.,Technology Center, Universidade Federal de Pernambuco, Brazil
| | - Márcio J C Moura
- CEERMA - Center for Risk Analysis, Reliability Engineering and Environmental Modeling, Federal University of Pernambuco, Brazil.,Department of Production Engineering, Federal University of Pernambuco, Brazil
| | - Isis D Lins
- CEERMA - Center for Risk Analysis, Reliability Engineering and Environmental Modeling, Federal University of Pernambuco, Brazil.,Department of Production Engineering, Federal University of Pernambuco, Brazil
| | | |
Collapse
|