1
|
Wen Z, Cai X, Liu Z, Tan L, Kong Y, Wang Y, Zhao Y. Genomic analyses reveal a lack of widespread strong selection in indigenous chickens. Poult Sci 2025; 104:105081. [PMID: 40138972 PMCID: PMC11985164 DOI: 10.1016/j.psj.2025.105081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
The study of domestication has been revolutionized with the advent of molecular genetics. Chickens, with their clear domestication history, emerge as an excellent model for study into the paths of evolution in domestication and improvement. Here we used genomic data from wild, indigenous, and commercial chickens to better understand how genetic drift and selection translate into their differentiations. Our investigation into the patterns of allelic change and divergence reveals a polygenic architecture governing genetic differentiation during domestication and improvement. We uncover distinctive population-specific differentiations in terms of genes and functions among wild, indigenous, and commercial chickens. Using Runs Of Homozygosity (ROH) based mixed model approach developed in this study, we identified only directional selection signatures occurring in wild and commercial chickens. Notably, our findings suggest that indigenous chickens serve as reservoirs of genetic diversity, necessary for rapid adaptation to new environments or subsequent modern breeding. This work provides unprecedented insights into the chicken domestication and improvement, and it illuminates our understanding of the domestication of other animal species.
Collapse
Affiliation(s)
- Zilong Wen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Cai
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zexuan Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lizhi Tan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Kong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuzhan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiqiang Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; National Research Facility for Phenotypic and Genotypic Analysis of Model Animals (Beijing), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Promkhun K, Sinpru P, Bunnom R, Molee W, Kubota S, Uimari P, Molee A. Jejunal transcriptomic profiling of carnosine synthesis precursor-related genes and pathways in slow-growing Korat chicken. Poult Sci 2024; 103:104046. [PMID: 39033572 PMCID: PMC11326888 DOI: 10.1016/j.psj.2024.104046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Carnosine is a physiologically important molecule in normal human body functions. Chicken meat is an excellent source of carnosine; especially slow-growing Korat chicken (KR) females have a high carnosine content in their meat. The carnosine content of chicken meat can be increased by dietary supplementation of β-alanine (βA) and L-histidine (L-His). Our objective was to reveal the pathways and genes through jejunal transcriptomic profiling related to βA and L-His absorption and transportation. We collected whole jejunum samples from 5 control and 5 experimental KR chicken, fed with 1% βA and 0.5% L-His supplementation. A total of 407 differentially expressed genes (P < 0.05, log2 fold change ≥2) were identified, 272 of which were down-regulated and 135 up-regulated in the group with dietary supplementation compared to the control group. Based on the integrated analysis of the protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps, 87 gene ontology terms were identified and 6 KEGG pathways were significantly (P < 0.05) enriched in the jejunum. The analyses revealed 6 key genes, KCND3, OPRM1, CCK, GCG, TRH, and GABBR2, that are related to neuroactive ligand-receptor interaction and the calcium signaling pathway. These findings give insight regarding the molecular mechanism related to carnosine precursor absorption and transportation in the jejunum and help to identify useful molecular markers for improving the carnosine content in slow-growing KR chicken meat.
Collapse
Affiliation(s)
- Kasarat Promkhun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Panpradub Sinpru
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Rujjira Bunnom
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pekka Uimari
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, 00790, Finland
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
3
|
Chen Z, Wen D, Cen J, Mu R. Hypothalamic transcriptome profile from laying period to incubation period of Changshun green-shell laying hens. Poult Sci 2024; 103:103950. [PMID: 38917610 PMCID: PMC11255903 DOI: 10.1016/j.psj.2024.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Incubation behavior in chickens is closely associated with hypothalamus. Here, RNA sequencing of hypothalamus from Changshun green-shell laying hens, an indigenous chicken breed from China, in egg-laying period (LP) and incubation period (BP) was conducted to identify critical pathways and candidate genes involved in controlling the incubation behavior in hypothalamus. A total of 637 up-regulated and 305 down-regulated differently expressed genes (DEGs) were identified in chicken hypothalamus between LP and BP groups. Gene ontology term (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis further revealed that neuroactive ligand-receptor interaction, hippo signaling pathway, and focal adhesion were significantly enriched. Five candidate genes (POMC, IGF1R, CHAD, VCL, and MYL9) were suggested to play crucial roles in the regulation of chicken incubation behavior. Our results further indicated the complexity of reproductive behavior of different chicken breeds.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China; Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun 558000, China.
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Jian Cen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China; Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun 558000, China
| |
Collapse
|
4
|
Cheng X, Zhang H, Guan S, Zhao Q, Shan Y. Receptor modulators associated with the hypothalamus -pituitary-thyroid axis. Front Pharmacol 2023; 14:1291856. [PMID: 38111381 PMCID: PMC10725963 DOI: 10.3389/fphar.2023.1291856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis maintains normal metabolic balance and homeostasis in the human body through positive and negative feedback regulation. Its main regulatory mode is the secretion of thyrotropin (TSH), thyroid hormones (TH), and thyrotropin-releasing hormone (TRH). By binding to their corresponding receptors, they are involved in the development and progression of several systemic diseases, including digestive, cardiovascular, and central nervous system diseases. The HPT axis-related receptors include thyrotropin receptor (TSHR), thyroid hormone receptor (TR), and thyrotropin-releasing hormone receptor (TRHR). Recently, research on regulators has become popular in the field of biology. Several HPT axis-related receptor modulators have been used for clinical treatment. This study reviews the developments and recent findings on HPT axis-related receptor modulators. This will provide a theoretical basis for the development and utilisation of new modulators of the HPT axis receptors.
Collapse
Affiliation(s)
- Xianbin Cheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
- Postdoctoral Research Workstation, Changchun Gangheng Electronics Company Limited, Changchun, China
| | - Hong Zhang
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shanshan Guan
- College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Kadhim HJ, Kuenzel WJ. Interaction between the hypothalamo-pituitary-adrenal and thyroid axes during immobilization stress. Front Physiol 2022; 13:972171. [PMID: 36330212 PMCID: PMC9623009 DOI: 10.3389/fphys.2022.972171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/06/2022] [Indexed: 12/21/2024] Open
Abstract
The location of corticotropin-releasing hormone receptor 2 (CRH-R2) on thyrotropes within the avian anterior pituitary (APit) and its activation by different stressors indicate a possible communication between hypothalamo-pituitary-adrenal (HPA) and thyroid (HPT) axes. Therefore, an experiment was designed to 1) compare the timing of major components of the HPT axis to those of the HPA axis; 2) address whether stressors activating the HPA axis may simultaneously upregulate components of the HPT axis. Blood, brain, and APit were sampled from chicks prior to stress (control) and 15, 30, 60, 90, and 120 min following immobilization (IM) stress. The nucleus of the hippocampal commissure (NHpC) and paraventricular nucleus (PVN) were cryo-dissected from brains for RT-qPCR. Gene expression of thyrotropin-releasing hormone (TRH) and its receptors (TRH-R1 and TRH-R3), urocortin3 (UCN3), deiodinase 2 (D2), and the second type of corticotropin-releasing hormone (CRH2) within the NHpC and PVN was measured. Additionally, gene expression of TRH receptors, thyroid stimulating hormone subunit beta (TSHβ), and D2 was determined in the APit and corticosterone assayed in blood. In brains, a significant upregulation in examined genes occurred at different times of IM. Specifically, UCN3 and CRH2 which have a high affinity to CRH-R2 showed a rapid increase in their mRNA levels that were accompanied by an early upregulation of TRHR1 in the NHpC. In the APit, a significant increase in gene expression of TSHβ and TRH receptors was observed. Therefore, results supported concurrent activation of major brain and APit genes associated with the HPA and HPT axes following IM. The initial neural gene expression originating within the NHpC resulted in the increase of TSHβ mRNA in the APit. Specifically, the rapid upregulation of UCN3 in the NHpC appeared responsible for the early activation of TSHβ in the APit. While sustaining TSHβ activation appeared to be due to both CRH2 and TRH. Therefore, data indicate that CRH-producing neurons and corticotropes as well as CRH- and TRH-producing neurons and thyrotropes are activated to produce the necessary energy required to maintain homeostasis in birds undergoing stress. Overall, data support the inclusion of the NHpC in the classical avian HPA axis and for the first time show the concurrent activation of the HPA axis and components of the HPT axis following a psychogenic stressor.
Collapse
Affiliation(s)
- Hakeem J. Kadhim
- Veterinary Medicine College, University of Thi-Qar, Nasiriyah, Iraq
| | - Wayne J. Kuenzel
- Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
6
|
Trubacova R, Drastichova Z, Novotny J. Biochemical and physiological insights into TRH receptor-mediated signaling. Front Cell Dev Biol 2022; 10:981452. [PMID: 36147745 PMCID: PMC9485831 DOI: 10.3389/fcell.2022.981452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) is an important endocrine agent that regulates the function of cells in the anterior pituitary and the central and peripheral nervous systems. By controlling the synthesis and release of thyroid hormones, TRH affects many physiological functions, including energy homeostasis. This hormone exerts its effects through G protein-coupled TRH receptors, which signal primarily through Gq/11 but may also utilize other G protein classes under certain conditions. Because of the potential therapeutic benefit, considerable attention has been devoted to the synthesis of new TRH analogs that may have some advantageous properties compared with TRH. In this context, it may be interesting to consider the phenomenon of biased agonism and signaling at the TRH receptor. This possibility is supported by some recent findings. Although knowledge about the mechanisms of TRH receptor-mediated signaling has increased steadily over the past decades, there are still many unanswered questions, particularly about the molecular details of post-receptor signaling. In this review, we summarize what has been learned to date about TRH receptor-mediated signaling, including some previously undiscussed information, and point to future directions in TRH research that may offer new insights into the molecular mechanisms of TRH receptor-triggered actions and possible ways to modulate TRH receptor-mediated signaling.
Collapse
|
7
|
Xu Y, Cai H, You C, He X, Yuan Q, Jiang H, Cheng X, Jiang Y, Xu HE. Structural insights into ligand binding and activation of the human thyrotropin-releasing hormone receptor. Cell Res 2022; 32:855-857. [PMID: 35365755 PMCID: PMC9437077 DOI: 10.1038/s41422-022-00641-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/23/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Youwei Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Hongmin Cai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chongzhao You
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinheng He
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hualiang Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Cheng
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
8
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|