1
|
Song HJ, Ali S, Moon BY, Kang HY, Noh EJ, Kim TS, Kim SJ, Kim JI, Lee YJ, Yoon SS, Lim SK. Antimicrobial Resistance Profiles and Molecular Characteristics of Salmonella enterica Serovar Agona Isolated from Food-Producing Animals During 2010-2020 in South Korea. Foodborne Pathog Dis 2025; 22:210-218. [PMID: 38442228 DOI: 10.1089/fpd.2023.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Multidrug-resistant (MDR) Salmonella enterica serovar Agona infections affect public health globally. This investigation aimed to ascertain the antimicrobial resistance profiles and molecular characteristics of Salmonella Agona isolates obtained from food-producing animals. A total of 209 Salmonella Agona isolates were recovered from mostly chickens (139 isolates), pigs (56 isolates), cattle (11 isolates), and ducks (3 isolates) between 2010 and 2020 in South Korea. In addition, these Salmonella Agona isolates were obtained from 25 slaughterhouses nationwide. Furthermore, this serotype suddenly increased in chickens in 2020. Salmonella Agona from chickens showed high resistance (69-83%) to ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole, and chloramphenicol. Moreover, chicken/duck isolates (83.1%) showed significantly higher levels of MDR than cattle/pig isolates (1.5%). For molecular analysis by pulsed-field gel electrophoresis, infrared spectroscopy biotyping, and multilocus sequence typing in combination, a total of 23 types were observed. Especially two major types, P1-III-2-13 and P1-IV-2-13, comprised 59.3% of the total isolates spreading in most farms. Moreover, Salmonella Agona sequence type (ST)13 was predominant (96.7%) among three different STs (ST13, ST11, and ST292) widely detected in chickens (94.3%) in most farms located nationwide. Taken together, MDR Salmonella Agona in chickens might pose a potential risk to public health through direct contact or the food chain.
Collapse
Affiliation(s)
- Hyun-Ju Song
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Sekendar Ali
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Bo-Youn Moon
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Hee Young Kang
- Centre for Infectious Diseases Research, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Eun Jeong Noh
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Tae-Sun Kim
- Public Health and Environment Institute of Gwangju, Gwangju, Korea
| | - Su-Jeong Kim
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Ji-In Kim
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Yun Jin Lee
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Soon-Seek Yoon
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| |
Collapse
|
2
|
Hong H, Kang M, Haymowicz A, Le HNM, Kim E, Yang SM, Ha SD, Kim HJ, Park SH. Genetic characterization and in silico serotyping of 62 Salmonella enterica isolated from Korean poultry operations. BMC Genomics 2025; 26:166. [PMID: 39979844 PMCID: PMC11841271 DOI: 10.1186/s12864-025-11358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The conventional method of antigen-based serotyping for Salmonella poses challenges due to the necessity of utilizing over 150 antisera. More recently, in silico Salmonella serotyping has emerged as a predictive alternative. The purpose of this study was to predict the serovars of 62 Salmonella enterica strains isolated from Korean poultry operations and their genetic characteristics using whole genome sequencing. The analysis employed diverse methods, including ribosomal, and core genome multi-locus sequence typing (MLST), based on Salmonella In Silico Typing Resource (SISTR). Pangenome, clusters of orthologous groups (COG) analysis, and identification of virulence and antibiotic resistance genes were conducted. RESULTS Salmonella enterica subspecies enterica serovars were observed and clustered based on the pangenome and phylogenetic tree: 21 Salmonella Albany (Albany), 13 Salmonella Bareilly (Bareilly), and 28 Salmonella Mbandaka (Mbandaka). The most frequently observed sequence types for the three serovars were ST292 in Albany, ST203 in Bareilly, and ST413 in Mbandaka. 18 antibiotic resistance genes showed varying presences based on the serovars, including Albany (qacEdelta1, tet(D), CARB-3 (blaCARB-3), and dfrA1) and Bareilly (aac(6')-ly). Intriguingly, a mutated gyrA (Ser83 → Phe, serine to phenylalanine) was observed in all 21 Albany strains, whereas Bareilly and Mbandaka carried the wild-type gyrA. Among 130 virulence genes analyzed, 107 were present in all 62 Salmonella strains, with Mbandaka strains exhibiting a higher prevalence of virulence genes related to fimbrial adherence compared to those of Albany and Bareilly. CONCLUSIONS The study identified distinct genetic characteristics among the three Salmonella serovars using whole genome sequencing. Albany carried a unique mutation in gyrA, occurring in the quinolone resistance-determining region. Additionally, the virulence gene profile of Mbandaka differed from the other serovars, particularly in fimbrial adherence genes. These findings demonstrate the effectiveness of in silico approaches in predicting Salmonella serovars and highlight genetic differences that may inform strategies for antibiotic resistance and virulence control, such as developing rapid diagnostic tools to detect the AMR (e.g. tet (D), and gyrA) or targeting serovar-specific virulence factors like fimbrial adherence genes in Mbandaka to mitigate pathogenicity.
Collapse
Affiliation(s)
- Hyunhee Hong
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Miseon Kang
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
- Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Avery Haymowicz
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Hoang Ngoc Minh Le
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Eiseul Kim
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Seung Min Yang
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Republic of Korea
| | - Hyun Jung Kim
- Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA.
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Republic of Korea.
| |
Collapse
|
3
|
Kim MB, Jung HR, Lee YJ. Emergence of Salmonella Infantis carrying the pESI megaplasmid in commercial farms of five major integrated broiler operations in Korea. Poult Sci 2024; 103:103516. [PMID: 38368739 PMCID: PMC10884471 DOI: 10.1016/j.psj.2024.103516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Considering Salmonella transmission occurs through several routes in integrated broiler operations, control of nontyphoidal Salmonella in commercial farms is essential. This study aimed to compare the distribution of persistent Salmonella serovars in environments and dead chickens between 5 major integrated broiler operations in Korea. The prevalence of Salmonella-positive farms in dust prior to placement by operations was 0 to 25%, but the prevalence in dust and feces at the time of depletion was increased to 16.7 to 41.7% and 16.7 to 66.7%, respectively. Moreover, the prevalence of farms with Salmonella in chickens that died within 1 week old and at 4 to 5 weeks old ranged from 8.3 to 58.3% and 16.7 to 41.7%, respectively. The prevalence of Salmonella enterica serovar Infantis-positive farms in dust prior to placement and in chickens that died within 1 week old was 5.2 and 3.4%, respectively, but the prevalence in dust and feces at the time of depletion and in chickens that died at 4 to 5 weeks old was significantly increased to 27.6, 41.4, and 20.7%, respectively (P < 0.05). Interestingly, the plasmid of emerging S. Infantis (pESI) was only identified in S. Infantis, and the prevalence of multidrug-resistance was significantly higher in pESI-positive S. Infantis (99.2%) than in pESI-negative S. Infantis (6.7%) (P < 0.05). The distribution of pulsotypes between pESI-positive and pESI-negative S. Infantis were varied, but a majority of S. Infantis were clustered only 2 pulsotypes. Moreover, pESI-positive S. Infantis harbored more virulence factors than pESI-negative S. Infantis. This study is the first report on characteristics of S. Infantis carrying the pESI plasmid in commercial broiler farms in Korea.
Collapse
Affiliation(s)
- Min Beom Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Ri Jung
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
4
|
Han M, Chae M, Lee S, No K, Han S. Strain typing and antimicrobial susceptibility of Salmonella enterica Albany isolates from duck farms in South Korea. Heliyon 2024; 10:e27402. [PMID: 38486745 PMCID: PMC10937681 DOI: 10.1016/j.heliyon.2024.e27402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Salmonella enterica is distributed worldwide and is a common cause of bacterial food poisoning in humans and a serious public health problem. Although duck meat consumption has recently increased in Korea, studies on the epidemiological relationship between S. enterica contamination in duck farms are scarce. Salmonella enterica serovar Albany isolates recovered from duck farms were analyzed using two typing methods - IR Biotyper® (IRBT) and multilocus variable-number tandem repeat analysis (MLVA). The clustering results were compared with the epidemiological survey findings and the antimicrobial resistance profiles. From April 2019 to October 2020, 20 individual feces per farm from 5-6-week-old ducks were collected repeatedly from 105 duck farms. Salmonella spp. isolated from duck feces were identified using PCR and multilocus sequence typing to investigate the prevalence and distribution of the Salmonella serovars. The prevalence of S. enterica was 19%, and S. enterica Albany was the predominantly recovered isolate. The S. enterica Albany isolates underwent antimicrobial susceptibility testing to determine the minimum inhibitory concentration. MLVA and IRBT methods established relatedness and diversity among the S. enterica Albany isolates. Multidrug-resistant S. enterica Albany was distributed in all the farms. Antimicrobial resistance profiles reflected the duck farm characteristics and isolates recovered from the same farm showed an identical profile. Isolates repeatedly recovered from the same farm also showed identical IRBT clusters and MLVA groups. These findings suggest that the isolates remained on the duck farm and re-infected new duck flocks. Thus, proper cleaning and disinfection is required before the farms are repopulated.
Collapse
Affiliation(s)
- Mina Han
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Munhui Chae
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Sangkab Lee
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Kyongok No
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Seongtae Han
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| |
Collapse
|
5
|
Ali MS, Song HJ, Moon BY, Kim SJ, Kang HY, Moon DC, Lee YH, Kwon DH, Yoon SS, Lim SK. Antibiotic Resistance Profiles and Molecular Characteristics of blaCMY-2-Carrying Salmonella enterica Serovar Albany Isolated from Chickens During 2013-2020 in South Korea. Foodborne Pathog Dis 2023; 20:492-501. [PMID: 37699238 DOI: 10.1089/fpd.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The production of β-lactamase by nontyphoidal Salmonella has become a public health issue throughout the world. In this study, we aimed to investigate the antimicrobial resistance profiles and molecular characteristics of β-lactamase-producing Salmonella enterica serovar Albany isolates. A total of 434 Salmonella Albany were obtained from feces and carcasses of healthy and diseased food-producing animals [cattle (n = 2), pigs (n = 3), chickens (n = 391), and ducks (n = 38)] during 2013-2020. Among the 434 Salmonella Albany isolates, 3.7% showed resistance to cefoxitin, and all the cefoxitin-resistant isolates were obtained from chickens. Moreover, Salmonella Albany isolates demonstrated high resistance to nalidixic acid (99.3%), trimethoprim/sulfamethoxazole (97.9%), ampicillin (86.6%), chloramphenicol (86.6%), and tetracycline (85.7%), as well as higher rates of multidrug resistance were detected in cefoxitin-resistant isolates compared to cefoxitin-susceptible isolates. All cefoxitin-resistant isolates harbored CMY-2-type β-lactamase and belonged to seven different pulsotypes, with type IV-b (43.75%) and IV-a (25%) making up the majority. In addition, genes encoding cefoxitin resistant of all blaCMY-2-harboring Salmonella Albany isolates were horizontally transmitted to a recipient Escherichia coli J53 by conjugation. Furthermore, 93.75% (15/16) of conjugative plasmids harboring blaCMY-2 genes belong to ST12/CC12-IncI1. Genetic characteristics of transmitted blaCMY-2 genes were associated with ISEcp1, which can play an essential role in the effective mobilization and expression of these genes. Salmonella Albany containing blaCMY-2 in chickens can potentially be transferred to humans. Therefore, it is necessary to restrict antibiotic use and conduct continuous monitoring and analysis of resistant bacteria in the poultry industry.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Hyun-Ju Song
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Su-Jeong Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Hee Young Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Dong Chan Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yeon-Hee Lee
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Dong-Hyeon Kwon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
6
|
Yang C, Xiang Y, Qiu S. Resistance in Enteric Shigella and nontyphoidal Salmonella : emerging concepts. Curr Opin Infect Dis 2023; 36:360-365. [PMID: 37594001 PMCID: PMC10487366 DOI: 10.1097/qco.0000000000000960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW The emergence of globally resistant enteric Shigella and nontyphoidal Salmonella strains (NTS) has limited the selection of effective drugs, which has become a major challenge for the treatment of infections. The purpose of this review is to provide the current opinion on the antimicrobial-resistant enteric Shigella and nontyphoidal Salmonella . RECENT FINDINGS Enteric Shigella and NTS are resistant to almost all classes of antimicrobials in recent years. Those with co-resistance to ciprofloxacin, azithromycin and ceftriaxone, the first-line antibiotics for the treatment of infectious diarrhoea have emerged worldwide. Some of them have caused interregional and international spread by travel, trade, MSM, and polluted water sources. Several strains have even developed resistance to colistin, the last-resort antibiotic used for treatment of multidrug-resistant Gram-negative bacteria infections. SUMMARY The drug resistance of enteric Shigella and NTS is largely driven by the use of antibiotics and horizontal gene transfer of mobile genetic elements. These two species show various drug resistance patterns in different regions and serotypes. Hence treatment decisions for Shigella and Salmonella infections need to take into consideration prevalent antimicrobial drug resistance patterns. It is worth noting that the resistance genes such as blaCTX,mph, ermB , qnr and mcr , which can cause resistance to ciprofloxacin, cephalosporin, azithromycin and colistin are widespread because of transmission by IncFII, IncI1, IncI2 and IncB/O/K/Z plasmids. Therefore, continuous global monitoring of resistance in Shigella and Salmonella is imperative.
Collapse
Affiliation(s)
- Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | | | | |
Collapse
|
7
|
Card RM, Chisnall T, Begum R, Sarker MS, Hossain MS, Sagor MS, Mahmud MA, Uddin ASMA, Karim MR, Lindahl JF, Samad MA. Multidrug-resistant non-typhoidal Salmonella of public health significance recovered from migratory birds in Bangladesh. Front Microbiol 2023; 14:1162657. [PMID: 37256054 PMCID: PMC10226424 DOI: 10.3389/fmicb.2023.1162657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 06/01/2023] Open
Abstract
Non-typhoidal Salmonella provides an exemplar for the One Health approach as it encompasses public and animal health, food safety, and environmental considerations. The contribution of environmental aspects is currently less well-defined. The purpose of this study was to determine the carriage occurrence of non-typhoidal Salmonella in migratory birds in Bangladesh and assess the potential significance to public and animal health. Cloacal swabs (N = 453) were collected in the years 2018-2020 from Tanguar and Hakaluki Haors, important wetland ecosystems in Northeastern Bangladesh. The prevalence of Salmonella was 13.5% (61 positive swabs). Classical serotyping identified six serovars: Salmonella enterica subsp. enterica serovars Perth, Kentucky, Albany, Infantis, Weltevreden, and Brancaster. Resistance towards 14 antimicrobials was assessed by broth microdilution minimum inhibitory concentration determination and the antimicrobial resistance (AMR) genotype established by whole-genome sequencing. S. Perth and S. Weltevreden isolates were susceptible and harbored no acquired AMR genes. Isolates from the remaining serovars were multidrug resistant, commonly possessing resistance to tetracycline, ampicillin, chloramphenicol, sulfamethoxazole, trimethoprim, and ciprofloxacin. Salmonella resistant to ciprofloxacin meets WHO criteria for priority pathogens. There was excellent concordance between resistance phenotype and the presence of corresponding AMR genes, many of which reside on Salmonella Genomic Islands. High-level ciprofloxacin resistance correlated with the presence of mutations in the chromosomal gyrB and/or parC genes. The S. Kentucky isolates were ST198, a widely distributed multidrug-resistant lineage reported in humans and animals, and constituting an ongoing risk to public health worldwide. We have demonstrated that multidrug-resistant non-typhoidal Salmonella of public health significance can be recovered from migratory birds. A potential for risk can manifest through direct interaction, transmission to food-producing livestock on farms, and dissemination via the long range migratory movements of birds. Risks can be mitigated by measures including continued surveillance and implementation of good farm biosecurity practices.
Collapse
Affiliation(s)
- Roderick M. Card
- Animal and Plant Health Agency, New Haw, Addlestone, United Kingdom
| | - Thomas Chisnall
- Animal and Plant Health Agency, New Haw, Addlestone, United Kingdom
| | - Ruhena Begum
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Md Samun Sarker
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Muhammad Sazzad Hossain
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Md Shahjalal Sagor
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Mohammad Asheak Mahmud
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - A. S. M. Ashab Uddin
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Md Rezaul Karim
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Johanna F. Lindahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mohammed Abdus Samad
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| |
Collapse
|
8
|
Alzahrani KO, AL-Reshoodi FM, Alshdokhi EA, Alhamed AS, Al Hadlaq MA, Mujallad MI, Mukhtar LE, Alsufyani AT, Alajlan AA, Al Rashidy MS, Al Dawsari MJ, Al-Akeel SI, AL-Harthi MH, Al Manee AM, Alghoribi MF, Alajel SM. Antimicrobial resistance and genomic characterization of Salmonella enterica isolates from chicken meat. Front Microbiol 2023; 14:1104164. [PMID: 37065154 PMCID: PMC10100587 DOI: 10.3389/fmicb.2023.1104164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
This study investigated genotypic and phenotypic antimicrobial resistance profiles, phylogenic relatedness, plasmid and virulence composition of 39 Salmonella enterica strains isolated from chicken meat samples using whole genome sequencing (WGS) technology. Four distinct serotypes were identified; Salmonella Minnesota (16/39, 41%), Salmonella Infantis (13/39, 33.3%), Salmonella Enteritidis (9/39, 23.1%), and one isolate was detected for Salmonella Kentucky (1/39, 2.6%), with sequence types (STs) as followed: ST548, ST32, ST11, and ST198, respectively. Phenotypic resistance to tetracycline (91.2%), ampicillin (82.4%), sulfisoxazole (64.7%), and nalidixic acid (61.6%) was the most observed. Resistome analysis revealed the presence of resistance genes to aminoglycosides, β-lactamase, sulfonamides, trimethoprim, phenicol, lincosamide, macrolides, and tetracyclines. Plasmidome showed the presence of eight incompatibility groups, including IncA/C2, IncFIB(K)_1_Kpn3, Col440I_1, IncR, IncX1, IncI1_1_Alpha, IncFIB(S)/IncFII(S), IncHI2/IncHI2A, IncX2 and ColpVC plasmids across the 39 genomes. Three resistance genes, sul2, tetA and blaCMY-2, were predicted to be located on IncA/C2 plasmid in S. Minnesota isolates, whereas all S. Infantis isolates were positive to IncFIB(K)_1_Kpn3 plasmid that carries bla CTX-M-65 gene. Eleven Salmonella pathogenicity islands and up to 131 stress and/or virulence genes were identified in the evaluated genomes. Phylogenetic analysis showed four phylogroups that were consistent with the identified ST profiles with a high level of inter-diversity between isolates. This is the first genomic characterization of Salmonella isolates from retail chicken meat in Saudi Arabia using WGS technology. The availability of Salmonella genomes from multiple geographic locations, including Saudi Arabia, would be highly beneficial in future source-tracking, especially during epidemiological surveillance and outbreak investigations.
Collapse
Affiliation(s)
- Khaloud O. Alzahrani
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Fahad M. AL-Reshoodi
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Elaf A. Alshdokhi
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Ashwaq S. Alhamed
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Meshari A. Al Hadlaq
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Mohammed I. Mujallad
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Lenah E. Mukhtar
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Amani T. Alsufyani
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Abdullah A. Alajlan
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Malfi S. Al Rashidy
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Mashan J. Al Dawsari
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Saleh I. Al-Akeel
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Meshari H. AL-Harthi
- Microbiology Section, Food Laboratory, Laboratories Executive Department, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Abdulaziz M. Al Manee
- Microbial Hazards Division, Risk Assessment Department, Executive Department of Monitoring and Risk Assessment, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed F. Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- Department of Basic Science, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences (KSAU), Riyadh, Saudi Arabia
| | - Suliman M. Alajel
- Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
- *Correspondence: Suliman M. Alajel,
| |
Collapse
|
9
|
Galán-Relaño Á, Sánchez-Carvajal J, Gómez-Gascón L, Vera E, Huerta B, Cardoso-Toset F, Gómez-Laguna J, Astorga R. Phenotypic and genotypic antibiotic resistance patterns in Salmonella Typhimurium and its monophasic variant from pigs in southern Spain. Res Vet Sci 2022; 152:596-603. [DOI: 10.1016/j.rvsc.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022]
|
10
|
Antimicrobial Resistance and PFGE Molecular Typing of Salmonella enterica serovar Gallinarum Isolates from Chickens in South Korea from 2013 to 2018. Animals (Basel) 2021; 12:ani12010083. [PMID: 35011189 PMCID: PMC8749661 DOI: 10.3390/ani12010083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Salmonella enterica serovar Gallinarum (S. enterica ser. Gallinarum) is a host-specific agent of fowl typhoid (FT). This is one of the most important bacterial infections in the poultry industry in both developing and developed countries, including South Korea. The use of antimicrobial drugs is the first choice for disease control. Antimicrobials, such as β-lactams, aminoglycosides, and fluoroquinolones, are frequently used to treat FT. However, the continuous use of antimicrobial drugs has led to the emergence and persistence of antimicrobial-resistant S. enterica ser. Gallinarum. In this study, we analyzed the antimicrobial susceptibility and epidemiological relationship of thirty isolates of S. enterica ser. Gallinarum isolated from poultry farms with an FT outbreak from 2013 to 2018 in South Korea. All the isolates showed a multi-drug resistant (MDR) phenotype. This study confirmed horizontal transmission and cross-contamination between farms within the same integrated poultry company or between farms belonging to different companies. The characterization of these isolates would be helpful to develop prevention and control strategies for the MDR S. enterica ser. Gallinarum infection in South Korea. Abstract Antimicrobial resistance and pulsed-field gel electrophoresis (PFGE) genotypes of collected S. enterica ser. Gallinarum isolates were investigated to examine the epidemiological relationship between field outbreak isolates of S. enterica ser. Gallinarum. Thirty S. enterica ser. Gallinarum isolates collected from poultry farms with FT outbreaks from 2013 to 2018 in South Korea were analyzed. All isolates were resistant to at least 3 of the 18 antimicrobials tested and exhibited an MDR phenotype. All isolates showed resistance to streptomycin, sulfisoxazole, and colistin. One isolate was resistant to 9 antimicrobials. The antimicrobial resistance profile, streptomycin-sulfisoxazole-colistin-nalidixic acid-ciprofloxacin-gentamicin (18/30, 60.0%), was the most prevalent. PFGE types were classified into 10 groups with a 100% correlation cutoff in dendrograms for 30 field isolates. The dominant PFGE types were 1 (8/30, 26.7%), 4 (7/30, 23.3%), and 9 (5/30, 16.7%). Interestingly some isolates collected from the same and different companies had the same PFGE type. We reported a high MDR rate in S. enterica ser. Gallinarum isolates. The present study highlights the occurrence of horizontal spread and cyclic contamination of MDR S. enterica ser. Gallinarum within the same company. Furthermore, we showed cross-contamination between different companies. The characterization of these isolates would be helpful in the development of prevention and control strategies for MDR S. enterica ser. Gallinarum infection in South Korea.
Collapse
|