1
|
Wang F, Yan W, Liu L, Shu D, Yang X, Xu W. The GI-19 dominant genotype of infectious bronchitis virus in chickens from 2021 to 2023 in Sichuan province is frequently involved in recombination events. Virology 2025; 608:110543. [PMID: 40286468 DOI: 10.1016/j.virol.2025.110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Infectious bronchitis virus (IBV), the etiological agent of infectious bronchitis (IB) in chickens, is a highly contagious respiratory disease that poses significant economic burdens on the global poultry industry. Comprehensive knowledge of the epidemiological patterns and genetic variations of IBV is crucial for effective prevention and control strategies. In this study, we collected 684 suspected samples from Sichuan province between 2021 and 2023. PCR testing revealed a total positivity rate of 26.9 %, with the Guangyuan region exhibiting the highest positivity rate at 37.2 %. Subsequently, we obtained 21 complete IBV S1 gene sequences and the phylogenetic analysis identified the GI-19 type as the predominant strain. Comparing nucleic acid similarity among the 21 isolated strains, we observed a range of 66.48 %-99.69 % nucleotide similarity (56.22 %-99.45 % in amino acids). The QXL87 vaccine strain exhibited higher similarity to the isolated strains. Amino acid variations in the three hypervariable regions (HVRs) showed the highest variability in HVR I. The GVI type strain differed in amino acid composition from QXL87 in HVR I, resulting in reduced N-glycosylation sites on the S1 gene. Furthermore, all isolated strains displayed varying reductions in N-glycosylation sites on the S1 gene compared to the QXL87 vaccine strain. Ultimately, recombination analysis revealed frequent involvement of the GI-19 and GI-22 strains in gene recombination. The majority of recombined strains were derived from partial segments of the GI-19 strain, with no recombination observed in any of the isolated GI-19 strains. In summary, our findings elucidate the prevalence of IBV in Sichuan province and highlight the pivotal role of the GI-19 strain in IBV recombination, thereby offering valuable data support for IBV control.
Collapse
Affiliation(s)
- Fuyan Wang
- Phoenix Food Group Gorporation.,LTD, Mianyang, 621600, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Lijia Liu
- Phoenix Food Group Gorporation.,LTD, Mianyang, 621600, China
| | - Dongli Shu
- Phoenix Food Group Gorporation.,LTD, Mianyang, 621600, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Wenlong Xu
- Phoenix Food Group Gorporation.,LTD, Mianyang, 621600, China.
| |
Collapse
|
2
|
Hou C, Ni R, Zhao L, Yan W, Wang K, Chu Q, Chen X, Wang H, Yang X. A novel chimpanzee adenovirus vector vaccine for protection against infectious bronchitis and Newcastle disease in chickens. Vet Res 2025; 56:100. [PMID: 40375108 DOI: 10.1186/s13567-025-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/07/2025] [Indexed: 05/18/2025] Open
Abstract
The development of effective poultry vaccines is crucial for maintaining flock health and productivity. In this study, we developed and evaluated a recombinant chimpanzee adenovirus vaccine (PAD-S1-HN) that simultaneously expresses the infectious bronchitis virus (IBV) spike subunit protein S1 and Newcastle disease virus (NDV) hemagglutinin-neuraminidase HN protein. The recombinant virus was successfully rescued in HEK293 cells, and transmission electron microscopy confirmed its typical adenoviral morphology. The expression of the IBV S1 and NDV HN proteins was validated by indirect immunofluorescence assay and western blotting. The vaccine demonstrated genetic stability over multiple passages and exhibited growth kinetics similar to those of the empty chimpanzee adenovirus vector. In animal trials, PAD-S1-HN effectively induced IBV- and NDV-specific antibodies, increased key cytokine levels, and stimulated mucosal immune responses, resulting in reduced viral loads, and alleviated clinical symptoms in vaccinated chickens. These findings indicate that the PAD-S1-HN vaccine provides strong immunogenicity and protective efficacy against IBV and NDV infections. Therefore, it presents a promising alternative to conventional vaccines, offering a novel approach for improving poultry disease management.
Collapse
Affiliation(s)
- Chengyao Hou
- Key Laboratory of Bio‑Resource and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Ruiqi Ni
- Key Laboratory of Bio‑Resource and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Lijun Zhao
- Key Laboratory of Bio‑Resource and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Wenjun Yan
- Key Laboratory of Bio‑Resource and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Kailu Wang
- Key Laboratory of Bio‑Resource and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Qinyuan Chu
- Key Laboratory of Bio‑Resource and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xinggui Chen
- Key Laboratory of Bio‑Resource and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Hongning Wang
- Key Laboratory of Bio‑Resource and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Yang
- Key Laboratory of Bio‑Resource and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
3
|
Keep S, Foldes K, Dowgier G, Freimanis G, Tennakoon C, Chowdhury S, Rayment A, Kirk J, Bakshi T, Stevenson-Leggett P, Chen Y, Britton P, Bickerton E. Recombinant infectious bronchitis virus containing mutations in non-structural proteins 10, 14, 15, and 16 and within the macrodomain provides complete protection against homologous challenge. J Virol 2025; 99:e0166324. [PMID: 40013770 PMCID: PMC11998542 DOI: 10.1128/jvi.01663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/26/2025] [Indexed: 02/28/2025] Open
Abstract
Infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically important disease of chickens. Vaccination uses live attenuated vaccines (LAVs) that are generated via serial passage of a virulent field isolate through embryonated hens' eggs, typically 80-100 times. The molecular basis of attenuation is unknown and varies with each attenuation procedure. To investigate specifically targeted attenuation, we utilized reverse genetics to target the macrodomain 1 (Mac1) domain within non-structural protein 3 of the virulent M41 strain. Macrodomains are found in a variety of viruses, including coronaviruses, and have been associated with the modulation of the host's innate response. Two recombinant IBVs (rIBVs) were generated with specific single point mutations, either Asn42Ala (N42A) or Gly49Ser (G49S), within the Mac1 domain generating rIBVs M41K-N42A and M41K-G49S, respectively. Replication in vitro was unaffected, and the mutations were stably maintained during passaging in vitro and in ovo. While M41K-N42A exhibited an attenuated phenotype in vivo, M41K-G49S was only partially attenuated. The attenuated in vivo phenotypes observed do not appear to be linked to a reduction in viral replication and additionally M41K-N42A highlighted the N42A mutation as a method of rational attenuation. Vaccination of chickens with either rIBV M41K-N42A or a rIBV containing the Mac1 N42A mutation and our previously identified attenuating Nsp10 and 14 mutations, Pro85Leu and Val393Leu respectively, offered complete protection from homologous challenge. The presence of multiple attenuating mutations did not appear to negatively impact vaccine efficacy. IMPORTANCE Infection of chickens with the Gammacoronavirus infectious bronchitis virus (IBV) causes an acute respiratory disease, resulting in reduced weight gain and reductions in egg laying making it a global concern for poultry industries and food security. Vaccination against IBV uses live attenuated viruses (LAVs), generated by multiple passages of a virulent virus through embryonated hens' eggs. The molecular basis of attenuation is unknown and unpredictable requiring a fine balance between loss of virulence and vaccine efficacy. In this study, we targeted the macrodomain of IBV for rational attenuation demonstrating a single point mutation can result in loss of pathogenicity. An IBV vaccine candidate was subsequently generated containing three specific attenuating mutations, to reduce the risk of reversion, which completely protected chickens. The targets in this study are conserved among IBV strains and the coronavirus family offering a potential method of rational attenuation that can be universally applied for vaccine development.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | | | | | - Adam Rayment
- The Pirbright Institute, Pirbright, United Kingdom
| | - James Kirk
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Yana Chen
- The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, United Kingdom
| | | |
Collapse
|
4
|
Zeng Z, Yao L, Feng H, Wang Z, Jiang L, Wang H, Zhou C, Shang Y, Wang H, Shao H, Wen G, Luo Q. Genetic and pathogenic characteristics of a novel recombinant GI-19 infectious bronchitis virus strain isolated from northeastern China. Poult Sci 2025; 104:104985. [PMID: 40081171 PMCID: PMC11946749 DOI: 10.1016/j.psj.2025.104985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Since the 1980s, despite vaccination, the infectious bronchitis virus (IBV) infection rate in commercial broilers and layers in China has continued to rise significantly, causing substantial economic losses to the poultry industry. In this study, an IBV strain was isolated from a layer farm in northeast China and named CK/CH/LN/2302. The whole genome sequence analysis revealed that CK/CH/LN/2302 shared a high level of homology (96.41 %) with the GI-19 strain SC/SDL/19. The phylogenetic tree based on the S1 gene indicates that CK/CH/LN/2302 belongs to the GI-19 lineage. Notably, recombination analysis using RDP5 and SimPlot software suggested that the GI-19 strain and a 4/91-like strain likely contributed to four recombination events in the CK/CH/LN/2302 genome. Phylogenetic analysis of these four regions further supported this conclusion. Protein structure analysis revealed that most of the nonstructural protein 2 (nsp2), main protease (Mpro), S1, and 5a protein regions were replaced by sequences from the 4/91-like strain. After infecting 1-day-old SPF chickens, CK/CH/LN/2302 presented a mortality rate as high as 60 %. Higher viral loads were detected in tissues such as the larynx, trachea, lungs, duodenum, jejunum and kidneys, indicating the multitissue tropism of this strain. Neutralization assay results revealed that the serum from 28-day-old commercial chickens immunized with the H120 vaccine was unable to effectively neutralize CK/CH/LN/2302. Compared with the S1 subunit of H120, CK/CH/LN/2302 demonstrated conformational changes, particularly in the hypervariable regions (HVRs), which may facilitate immune evasion. The genetic characteristics and pathogenicity of CK/CH/LN/2302 highlight the ongoing evolution of GI-19 IBV strains in China, emphasizing the urgent need for appropriate control strategies.
Collapse
Affiliation(s)
- Zhe Zeng
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Lun Yao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Helong Feng
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China; Shannan Tibetan Chicken Industry Research Institute, Shannan 856000 Tibet, China
| | - Zichen Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Liren Jiang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Haojie Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Chengli Zhou
- Liaoning Agricultural Development Service Center, Shenyang, China
| | - Yu Shang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Hongcai Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Huabin Shao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| | - Qingping Luo
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
5
|
Kim JY, Le HD, Thai TN, Kim JK, Song HS, Her M, Kim HR. Revealing a novel GI-19 lineage infectious bronchitis virus sub-genotype with multiple recombinations in South Korea using whole-genome sequencing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 128:105717. [PMID: 39826890 DOI: 10.1016/j.meegid.2025.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Infectious bronchitis (IB), caused by the infectious bronchitis virus (IBV), is a highly contagious chicken disease, causing economic losses worldwide. New IBV strains and variants continue to emerge despite using inactivated and live-attenuated vaccines to prevent or control IB. In this study, the S1 genes of 46 IBV strains, isolated from commercial chicken flocks between 2003 and 2024 in Korea were sequenced and genetically characterized. The IBV isolates belonged to Korean group II (K-II), which was included in the GI-19 lineage. The K-II was divided into five sub-genogroups (a-e) based on phylogenetic tree analysis results and nucleotide identification of the S1 gene. Of these, K-IId was the most common genotype in Korea; however, eight novel isolates belonging to the K-IIe sub-genotype were discovered. The nucleotide and amino acid identities of the other four K-II sub-genotypes and the eight isolates were 84.42-95.89 % and 84.02-95.86 %, respectively. The complete genomes of the eight K-IIe isolates were obtained using next-generation sequencing. Various recombination patterns were observed despite the high homology of the S1 gene among the eight IBV strains. Among the eight K-IIe isolates, six were recombinants, exhibiting recombinations between K-IIe and K-IIc, K-IIe and K-IIa, and with the live vaccine strain. Most recombination breakpoints were detected in the nsp2 region of the ORF1a, S2, and M genes. The present study proposed new classification criteria for the K-II belonged to the GI-19 lineage prevalent in South Korea and revealed the recombination patterns of recently identified novel isolates, providing important information on novel viral sub-genotype strains and IBV evolution.
Collapse
Affiliation(s)
- Ji-Ye Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Hoang Duc Le
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; Institute of Biotechnology, Vietnam Academy of Science and Technology, Cau Giay 11300, Hanoi, Vietnam
| | - Tuyet Ngan Thai
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Jae-Kyeom Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Hye-Soon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Moon Her
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
6
|
Alhafufi AN, Kasem S, Almajhdi FN, Albaqshi HA, Alaql FA, Rihan EA, Abd-Allah EM, Alyousaf AA, Aljasem YK, Aljehani ND, Haridy MA, Alhimaidi AR, Abdel-Moneim AS. Full-length genome reveals genetic diversity and extensive recombination patterns of Saudi GI-1 and GI-23 genotypes of infectious bronchitis virus. Virol J 2025; 22:1. [PMID: 39755629 PMCID: PMC11700436 DOI: 10.1186/s12985-024-02614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Despite numerous genetic studies on Infectious Bronchitis Virus (IBV), many strains from the Middle East remain misclassified or unclassified. Genotype 1 (GI-1) is found globally, while genotype 23 (GI-23) has emerged as the predominant genotype in the Middle East region, evolving continuously through inter- and intra-genotypic recombination. The GI-23 genotype is now enzootic in Europe and Asia. METHODS Over a 24-month period from May 2022 to June 2024, 360 samples were collected from 19 layer and 3 broiler poultry farms in central Saudi Arabia. The chickens exhibited reduced laying rates and symptoms such as weakness and respiratory distress, while broilers showed respiratory issues. Samples, including tracheal swabs and various tissue specimens, were pooled, homogenized, and stored at -20 °C prior to PCR analysis. The samples underwent virus isolation in embryonated chicken eggs, RNA extraction using automated systems, and detection of IBV through real-time RT-PCR targeting a conserved 5'-UTR fragment. Full-length genome sequencing was performed, and recombination analysis was conducted using RDP 4.6. RESULTS Saudi IBV strains were found to cluster into genotypes GI-1 and GI-23.1. The study identified critical amino acid substitutions in the hypervariable regions of the spike protein and detected recombination events in the ORF1ab, N, M, 3ab, and 5ab genes, with nsp3 of the ORF1ab showing the greatest number of recombination events. CONCLUSION The multiple inter- and intra-genotypic recombination events that were detected in different genes indicate that the circulating IBV strains do not share a single ancestor but have emerged through successive recombination events.
Collapse
Affiliation(s)
- Ali N Alhafufi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Samy Kasem
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El Geish Street, Kafrelsheikh, 33516, Egypt.
| | - Fahad N Almajhdi
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hassan A Albaqshi
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
| | - Fanan A Alaql
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
| | - Ehab A Rihan
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
- Animal Health Research Institute, Giza, 12618, Egypt
| | - Ehab M Abd-Allah
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ameen A Alyousaf
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
| | - Yahya K Aljasem
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
| | - Najwa D Aljehani
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
| | - Mohei A Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Ahmed R Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed S Abdel-Moneim
- Department of Microbiology, College of Medicine, Taif University, Taif, 21944, Saudi Arabia.
| |
Collapse
|
7
|
Farooq M, Ali A, Hassan MSH, Abdul-Careem MF. Nucleotide and Amino Acid Analyses of Unique Infectious Bronchitis Virus (IBV) Variants from Canadian Poultry Flocks with Drop in Egg Production. Genes (Basel) 2024; 15:1480. [PMID: 39596680 PMCID: PMC11593648 DOI: 10.3390/genes15111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Infectious bronchitis (IB) is a highly infectious avian disease caused by the infectious bronchitis virus (IBV). The disease causes lesions mainly in the respiratory, reproductive, and renal systems and has a significant economic impact on the poultry industry worldwide. METHODS We discovered two unique IBV isolates (T-62: PP737794.1 and CL-61: PP783617.1) circulating in Canada and molecularly characterized them. RESULTS The phylogenetic analysis revealed that the IBV isolates belong to genotype I and fall between lineages 25 and 7. Further analysis of the T-62 IBV isolate indicated that it is a potential recombinant of the Iowa state isolate (IA1162/2020-MW) and that the CL-61 strain of the IBV is also a recombinant IBV with the Connecticut (Conn) vaccine strain as its major parent. The S1 glycoprotein of the CL-61 and T-62 strains of the IBV had 85.7% and 73.2% amino acid (aa) identities respectively compared to the Conn vaccine strain. There were 67 and 129 aa substitutions among the S1 glycoprotein of the CL-61 and T-62 strains of the IBV compared to the Conn vaccine, respectively. Importantly, two and nineteen of these aa variations were in hypervariable regions 1 (HVR1) and HVR3. Finally, the two IBV isolates possessed a higher affinity for the sialic acid ligand compared to the DMV/1639 and Mass/SES IBV strains. CONCLUSIONS Genetic recombination in the IBV results in the continual emergence of new variants, posing challenges for the poultry industry. As indicated by our analyses, live attenuated vaccine strains play a role in the genetic recombination of the IBV, resulting in the emergence of variants.
Collapse
Affiliation(s)
- Muhammad Farooq
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive, NW, Calgary, AB T2N 4N1, Canada; (M.F.); (A.A.)
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive, NW, Calgary, AB T2N 4N1, Canada; (M.F.); (A.A.)
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt
| | - Mohamed S. H. Hassan
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive, NW, Calgary, AB T2N 4N1, Canada; (M.F.); (A.A.)
| |
Collapse
|
8
|
Yan W, Fu X, Li H, Wang K, Song C, Hou C, Lei C, Wang H, Yang X. The long non-coding RNA lncRNA-DRNR enhances infectious bronchitis virus replication by targeting chicken JMJD6 and modulating interferon-stimulated genes expression via the JAK-STAT signalling pathway. Vet Res 2024; 55:141. [PMID: 39501382 PMCID: PMC11539454 DOI: 10.1186/s13567-024-01396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 11/08/2024] Open
Abstract
Infectious bronchitis virus (IBV) is the causative agent of infectious bronchitis (IB), a severe disease that primarily affects young chickens and poses a significant challenge to the global poultry industry. Understanding the complex interaction between the virus and its host is vital for developing innovative antiviral strategies. Long non-coding RNA (lncRNA) plays a crucial role in regulating host antiviral immune responses. Our previous studies have shown that IBV infection disrupts the stability of lncRNA in host cells, indicating a potential regulatory role for lncRNA in IBV pathogenesis. It is still not clear how lncRNA precisely modulates IBV replication. In this study, we observed down-regulation ofMSTRG.26120.58 (named lncRNA-DRNR) expression in various chicken cell lines upon IBV infection. We demonstrated that silencing lncRNA-DRNR using siRNA enhances intracellular replication of IBV. Through exploring genes encoding proteins upstream and downstream of lncRNA-DRNR within a 100 kb range, we identified chJMJD6 (chicken JMJD6) as a potential target gene negatively regulated by lncRNA-DRNR expression levels. Furthermore, chJMJD6 inhibits STAT1 methylation, thereby affecting the induction of interferon-stimulated genes (ISGs) through the activation of the IFN-β-mediated JAK-STAT signalling pathway, ultimately promoting the intracellular replication of IBV. In summary, our findings reveal the critical role played by lncRNA-DRNR during IBV infection, providing novel insights into mechanisms underlying coronavirus-induced disruption in lncRNA stability.
Collapse
Affiliation(s)
- Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xue Fu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Cailiang Song
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Chengyao Hou
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Cangwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
9
|
Wu Q, Xu M, Wei D, Zhang X, Li D, Mei M. Pathogenicity and molecular characterization of a GI-19 infectious bronchitis virus isolated from East China. Front Vet Sci 2024; 11:1431172. [PMID: 39170640 PMCID: PMC11335494 DOI: 10.3389/fvets.2024.1431172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Infectious bronchitis virus (IBV) is responsible for avian infectious bronchitis, a disease prevalent in countries with intensive poultry farming practices. Given the presence of multiple genotypic strains in China, identifying the regionally dominant genotypes is crucial for the implementation of effective prevention and control measures. This study focuses on the IBV strain CK/CH/WJ/215, isolated from a diseased commercial chicken flock in China in 2021. The CK/CH/WJ/215 isolate was genetically characterized through complete S1 sequence analysis. Phylogenetic comparisons were made with prevalent vaccine strains (H120, LDT3-A, and 4/91). Glycosylation patterns in the S1 protein were also analyzed. Pathogenicity was assessed in 7-day-old specific-pathogen-free chicks, monitoring morbidity, mortality, and tissue tropisms. Phylogenetic analysis clustered the CK/CH/WJ/215 isolate within the GI-19 lineage. Identity with the vaccination strains H120, LDT3-A, and 4/91 was low (75.7%, 78.6%, and 77.5% respectively). Novel glycosylation sites at positions 138 and 530 were identified compared to H120 and LDT-A. The isolate demonstrated nephropathogenic characteristics, causing 100% morbidity and 73.3% mortality in SPF chicks, with broader tropisms in tissues including trachea, lungs, kidneys, and bursa of Fabricius. Comprehensive genetic and pathological investigations revealed significant differences between the CK/CH/WJ/215 isolate and common vaccine strains, including novel glycosylation sites and a strong multiorgan infective capability. These findings are crucial for understanding the evolutionary dynamics of IBV and developing more effective prevention and control strategies.
Collapse
Affiliation(s)
- Qi Wu
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Mengcheng Xu
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dengle Wei
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Ding Li
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Mei Mei
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
10
|
Meng X, Zhang J, Wan Z, Li T, Xie Q, Qin A, Shao H, Zhang H, Ye J. Molecular epidemiology of infectious bronchitis virus in eastern and southern China during 2021-2023. Poult Sci 2024; 103:103939. [PMID: 38909507 PMCID: PMC11254719 DOI: 10.1016/j.psj.2024.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
As a highly infectious and contagious pathogen in chickens, infectious bronchitis virus (IBV) is currently grouped into nine genotypes (GI to GIX). However, the classification of serotypes of IBV is still not clear. In this study, 270 field strains of IBV were isolated from dead or diseased chicken flocks in eastern and southern China during January 2021 to April 2023. These isolated IBV strains could be classified into 2 genotypes, GI (including 5 lineages GI-1, GI-13, GI-19, GI-22, and GI-28) and GVI based on the complete S1 sequence. Further analysis showed that the GI-19, GI-13, GI-22, GI-28, and GVI were the dominant genotypes with the proportions of 61.48, 8.89, 8.89, 7.78, and 8.89% respectively, and the homology of S1 protein of these isolates ranged from 86.85 to 100% in GI-19, 92.22 to 100% in GI-13, 83.1 to 100% in GI-22, 94.81 to 100% in GI-28 and 90.0 to 99.8% in GVI, respectively. Moreover, cross-neutralization test with sera revealed that these isolates in GI-19 lineage could be classified into at least 3 serotypes according to the antigenic relationship. In addition, structure assay using PyMOL indicated that one mutation such as S120 in receptor binding site (RBD) of GI-19 might alter the antigenicity and conformation of S protein of IBV. Overall, our data demonstrate that not only multiple genotypes, but also multiple serotypes in a single genotype or lineage have been co-circulated in eastern and southern China, providing novel insights into the molecular evolution of the antigenicity of IBV and highlighting the significance of the selection of the dominant isolate for vaccine development in IBV endemic region.
Collapse
Affiliation(s)
- Xianchen Meng
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Biotechnology Research laboratory, Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu, 213168, China
| | - Jianjun Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, Jiangsu, 225000, China
| | - Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Haitao Zhang
- Biotechnology Research laboratory, Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu, 213168, China.
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
11
|
Le HD, Thai TN, Kim JK, Song HS, Her M, Tran XT, Kim JY, Kim HR. An Amplicon-Based Application for the Whole-Genome Sequencing of GI-19 Lineage Infectious Bronchitis Virus Directly from Clinical Samples. Viruses 2024; 16:515. [PMID: 38675858 PMCID: PMC11054852 DOI: 10.3390/v16040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Infectious bronchitis virus (IBV) causes a highly contagious respiratory disease in chickens, leading to significant economic losses in the poultry industry worldwide. IBV exhibits a high mutation rate, resulting in the continuous emergence of new variants and strains. A complete genome analysis of IBV is crucial for understanding its characteristics. However, it is challenging to obtain whole-genome sequences from IBV-infected clinical samples due to the low abundance of IBV relative to the host genome. Here, we present a novel approach employing next-generation sequencing (NGS) to directly sequence the complete genome of IBV. Through in silico analysis, six primer pairs were designed to match various genotypes, including the GI-19 lineage of IBV. The primer sets successfully amplified six overlapping fragments by long-range PCR and the size of the amplicons ranged from 3.7 to 6.4 kb, resulting in full coverage of the IBV genome. Furthermore, utilizing Illumina sequencing, we obtained the complete genome sequences of two strains belonging to the GI-19 lineage (QX genotype) from clinical samples, with 100% coverage rates, over 1000 × mean depth coverage, and a high percentage of mapped reads to the reference genomes (96.63% and 97.66%). The reported method significantly improves the whole-genome sequencing of IBVs from clinical samples; thus, it can improve understanding of the epidemiology and evolution of IBVs.
Collapse
Affiliation(s)
- Hoang Duc Le
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi 11300, Vietnam;
| | - Tuyet Ngan Thai
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| | - Jae-Kyeom Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| | - Hye-Soon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| | - Moon Her
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| | - Xuan Thach Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi 11300, Vietnam;
| | - Ji-Ye Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| | - Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| |
Collapse
|
12
|
Kim DW, Kim JY, Lee DW, Lee HC, Song CS, Lee DH, Kwon JH. Detection of multiple recombinations of avian coronavirus in South Korea by whole-genome analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105565. [PMID: 38309607 DOI: 10.1016/j.meegid.2024.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Infectious bronchitis virus (IBV), an avian coronavirus, has caused considerable damage to the poultry industry. In Korea, indigenous KM91-like and newly introduced QX-like lineages belonging to the GI-19 lineage have been prevalent despite constant vaccination. In this study, complete genome sequences of 23 IBV isolates in Korea from 2010 to 2020 were obtained using next-generation sequencing, and their phylogenetic relationship and recombination events were analyzed. Phylogenetic analysis based on the S1 gene showed that all isolates belonged to the GI-19 lineage and were divided into five subgroups (KM91-like, K40/09-like, and QX-like II to IV). Among the 23 isolates, 14 recombinants were found, including frequent recombination between KM91-like and QX-like strains. In addition, it was observed that other lineages, such as GI-1, GI-13, and GI-16, were involved in recombination. Most recombination breakpoints were detected in the ORF1ab gene, particularly nsp3. However, when considering the size of each genome, recombination occurred more frequently in the 3a, E and 5a genes. Taken together, genetic recombination frequently occurred throughout the entire genome between various IBV strains in Korea, including live attenuated vaccine strain. Our study suggests the necessity of further research on the contribution of recombination of genomes outside the spike region to the biological characteristics of IBV.
Collapse
Affiliation(s)
- Da-Won Kim
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ji-Yun Kim
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dong-Wook Lee
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyuk-Chae Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
13
|
Abozeid HH. Global Emergence of Infectious Bronchitis Virus Variants: Evolution, Immunity, and Vaccination Challenges. Transbound Emerg Dis 2023; 2023:1144924. [PMID: 40303661 PMCID: PMC12017171 DOI: 10.1155/2023/1144924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 05/02/2025]
Abstract
Infectious bronchitis is an acute, extremely contagious viral disease affecting chickens of all ages, leading to devastating economic losses in the poultry industry worldwide. Affected chickens show respiratory distress and/or nephritis, in addition to decrease of egg production and quality in layers. The avian coronavirus, infectious bronchitis virus (IBV), is a rapidly evolving virus due to the high frequency of mutations and recombination events that are common in coronaviruses. This leads to the continual emergence of novel genotypes that show variable or poor crossprotection. The immune response against IBV is complex. Passive, innate and adaptive humoral and cellular immunity play distinct roles in protection against IBV. Despite intensive vaccination using the currently available live-attenuated and inactivated IBV vaccines, IBV continues to circulate, evolve, and trigger outbreaks worldwide, indicating the urgent need to update the current vaccines to control the emerging variants. Different approaches for preparation of IBV vaccines, including DNA, subunit, peptides, virus-like particles, vectored and recombinant vaccines, have been tested in many studies to combat the disease. This review focuses on several key aspects related to IBV, including its clinical significance, the functional structure of the virus, the factors that contribute to its evolution and diversity, the types of immune responses against IBV, and the characteristics of both current and emerging IBV vaccines. The goal is to provide a comprehensive understanding of IBV and explore the emergence of variants, their dissemination around the world, and the challenges to define the efficient vaccination strategies.
Collapse
Affiliation(s)
- Hassanein H. Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Wajid A, Raheem A, Sherzada S, Batool A, Khosa AN. Phylogenetic and antigenic analysis of infectious bronchitis virus isolated from commercial and backyard chickens in Pakistan, 2015-2018. J Gen Virol 2023; 104. [PMID: 37470343 DOI: 10.1099/jgv.0.001862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
Infectious bronchitis virus (IBV) is a rapidly evolving virus affecting both vaccinated and unvaccinated poultry flocks and is responsible for significant economic losses globally; hence, it is imperative to obtain a deeper understanding of this pathogen. In this study, seven IBV strains were isolated from commercial and backyard poultry flocks during 2015-2018. We obtained full-length IBV genomes of two viruses using the Illumina sequencing method, while five additional viruses were genetically characterized through full-length spike (S1) gene sequencing. Phylogenetic and distance analysis based on complete S1 gene and full-length genome sequences revealed that one IBV isolate belonged to genotype GI-1 and six viruses were clustered within genotype GI-13. Deduced amino acid sequences of GI-13 strains exhibited 31.8-37.2 % divergence with the commonly used classic vaccine strains (M41) and 2.7-12.6 % with variant vaccine strains (4/91) in Pakistan. High evolutionary distances suggest that the IBV viruses circulating in Pakistan are under continuous evolutionary pressure. Moreover, ch/IBV/Pak/AW-2/2017 was found to have originated from an intra-genotypic recombination event between the variant group (GI-23 lineage as a major parent) and variant vaccine strain (4/91-like as a minor parent) and is the first example of recombination within genotype GI-13 in Pakistan. Together, these findings provide genetic and evolutionary insights into the currently circulating IBV genotypes in Pakistan, which could help to better understand the origin, spread and evolution of IBVs, and to ascertain the importance of disease monitoring as well as re-evaluation forof currently used vaccines and vaccination programmes.
Collapse
Affiliation(s)
- Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Asif Raheem
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Shahid Sherzada
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Andleeb Batool
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Ahmad Nawaz Khosa
- Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Lasbela District, Balochistan, Pakistan
| |
Collapse
|
15
|
Yuan W, Lv T, Jiang W, Hou Y, Wang Q, Ren J, Fan L, Xiang B, Lin Q, Ding C, Ren T, Chen L. Antigenic Characterization of Infectious Bronchitis Virus in the South China during 2021-2022. Viruses 2023; 15:1273. [PMID: 37376573 DOI: 10.3390/v15061273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Avian infectious bronchitis is a serious and highly contagious disease that is caused by the infectious bronchitis virus (IBV). From January 2021 to June 2022, 1008 chicken tissue samples were collected from various regions of southern China, and 15 strains of the IBV were isolated. Phylogenetic analysis revealed that the strains mainly comprised the QX type, belonging to the same genotype as the currently prevalent LX4 type, and identified four recombination events in the S1 gene, among which lineages GI-13 and GI-19 were most frequently involved in recombination. Further study of seven selected isolates revealed that they caused respiratory symptoms, including coughing, sneezing, nasal discharge, and tracheal sounds, accompanied by depression. Inoculation of chicken embryos with the seven isolates resulted in symptoms such as curling, weakness, and bleeding. Immunization of specific pathogen-free (SPF) chickens with inactivated isolates produced high antibody levels that neutralized the corresponding strains; however, antibodies produced by vaccine strains were not effective in neutralizing the isolates. No unambiguous association was found between IBV genotypes and serotypes. In summary, a new trend in IBV prevalence has emerged in southern China, and currently available vaccines do not provide protection against the prevalent IBV strains in this region, facilitating the continued spread of IBV.
Collapse
Affiliation(s)
- Weifeng Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Ting Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weiwei Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuechi Hou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Qingyi Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
16
|
Li H, Liu G, Zhou Q, Yang H, Zhou C, Kong W, Su J, Li G, Si H, Ou C. Which strain of the avian coronavirus vaccine will become the prevalent one in China next? Front Vet Sci 2023; 10:1139089. [PMID: 37215473 PMCID: PMC10196085 DOI: 10.3389/fvets.2023.1139089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Infectious bronchitis virus (IBV) is a vital pathogen in poultry farms, which can induce respiratory, nephropathogenic, oviduct, proventriculus, and intestinal diseases. Based on the phylogenetic classification of the full-length S1 gene, IBV isolates have been categorized into nine genotypes comprising 38 lineages. GI (GI-1, GI-2, GI-3, GI-4, GI-5, GI-6, GI-7, GI-13, GI-16, GI-18, GI-19, GI-22, GI-28, and GI-29), GVI-1 and GVII-1 have been reported in China in the past 60 years. In this review, a brief history of IBV in China is described, and the current epidemic strains and licensed IBV vaccine strains, as well as IBV prevention and control strategies, are highlighted. In addition, this article presents unique viewpoints and recommendations for a more effective management of IBV. The recombinant Newcastle Disease virus (NDV) vector vaccine expressed S gene of IBV QX-like and 4/91 strains may be the dominant vaccine strains against NDV and IBV.
Collapse
Affiliation(s)
- Haizhu Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Gengsong Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qiaoyan Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongchun Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Congcong Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weili Kong
- Gladstone Institute of Virology, University of California, San Francisco, San Francisco, CA, United States
| | - Jieyu Su
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Gonghe Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Changbo Ou
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| |
Collapse
|
17
|
Yan W, Yang Q, Huang S, Liu S, Wang K, Tang Y, Lei C, Wang H, Yang X. Insights on genetic characterization and pathogenesis of a GI-19 (QX-like) infectious bronchitis virus isolated in China. Poult Sci 2023; 102:102719. [PMID: 37156078 DOI: 10.1016/j.psj.2023.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 05/10/2023] Open
Abstract
Infectious bronchitis virus (IBV) causes respiratory diseases in chickens, incurring great losses to the poultry industry worldwide. In this study, we isolated an IBV strain, designated as AH-2020, from the chickens vaccinated with H120 and 4/91 in Anhui, China. The sequence homology analysis based on the S1 gene revealed that AH-2020 shares low similarities with the 3 vaccine strains, namely, H120, LDT3-A, and 4/91 (78.19, 80.84, and 81.6%, respectively). Phylogenetic analysis based on the S1 gene revealed that AH-2020 clustered with the GI-19 type. Furthermore, protein modeling revealed that the mutations in the amino acids in AH-2020 were mainly located in the N-terminal domain of S1 (S1-NTD), and the pattern of deletion and insertion mutations in the S1 protein may have influenced the structural changes on the surface of S1. Further, approximately 7-day-old SPF chickens were inoculated with AH-2020 at 106.0 EID50. These chickens exhibited clinical signs of the infection such as listlessness, huddling, and head-shaking, accompanied by depression and 40% mortality. Serum antibody test demonstrated that in response to the AH-2020 infection, the antibody level increased the fastest at 7 dpi, with virus shedding rate of cloaca being 100% at 14 dpi. The viral titer in various tissues was detected using hematoxylin and eosin staining and immunohistochemistry, which revealed that AH-2020 infection can damage the kidney, trachea, lung, cecal tonsil, and bursa of Fabricius. Our study provided evidence that the GI-19-type IBV is undergoing more complex mutations, and effective measures are urgently needed to prevent the spread of these variant strains.
Collapse
Affiliation(s)
- Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Qingcheng Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Siyu Huang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Song Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Yizhi Tang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Cangwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
18
|
Kim HJ, Lee HC, Cho AY, Choi YJ, Lee H, Lee DH, Song CS. Novel recombinant avian infectious bronchitis viruses from chickens in Korea, 2019-2021. Front Vet Sci 2023; 10:1107059. [PMID: 36816194 PMCID: PMC9931148 DOI: 10.3389/fvets.2023.1107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Infectious bronchitis virus (IBV) has evolved through various mutation mechanisms, including antigenic drift and recombination. Four genotypic lineages of IBVs including GI-15, GI-16, GI-19, and GVI-1 have been reported in Korea. In this study, we isolated two IBVs from chicken farms, designated IBV/Korea/289/2019 (K289/19) and IBV/Korea/163/2021 (K163/21), which are two distinct natural recombinant viruses most likely produced by genetic reassortment between the S1 gene of K40/09 strain (GI-19 lineage) and IBV/Korea/48/2020 (GI-15 lineage) in co-infected commercial chickens. Comparative sequence analysis of hypervariable regions (HVRs) revealed that the K289/19 virus had similar HVR I and II with the K40/09 virus (100% and 99.2% nucleotide sequence identity, respectively), and HVR III with the IBV/Korea/48/2020 virus (100% nucleotide sequence identity). In contrast, the K163/21 virus had HVR I and II similar to the IBV/Korea/48/2020 virus (99.1% and 99.3% nucleotide sequence identity, respectively), and HVR III to the K40/09 virus (96.6% nucleotide sequence identity). The K289/19 virus exhibited similar histopathologic lesions, tissue tropism in trachea and kidney, and antigenicity with the parental K40/09 virus. The K163/21 exhibited similar pathogenicity and tissue tropism with the K40/09 virus, which were similar results with the isolate K289/19. However, it showed a lower antigenic relatedness with both parental strains, exhibiting R-value of 25 and 42, respectively. The continued emergence of the novel reassortant IBVs suggests that multiple recombination events have occurred between different genotypes within Korea. These results suggest that antigenic profiles could be altered through natural recombination in the field, complicating the antigenic match of vaccine strains to field strains. Enhanced surveillance and research into the characteristics of newly emerging IBVs should be carried out to establish effective countermeasures.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | | | - Andrew Y. Cho
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Yun-Jeong Choi
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Heesu Lee
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Dong-Hun Lee
- Wildlife Health Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea,*Correspondence: Dong-Hun Lee ✉
| | - Chang-Seon Song
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea,KHAV Co., Ltd., Seoul, South Korea,Chang-Seon Song ✉
| |
Collapse
|
19
|
Rapid and Highly Efficient Genetic Transformation and Application of Interleukin-17B Expressed in Duckweed as Mucosal Vaccine Adjuvant. Biomolecules 2022; 12:biom12121881. [PMID: 36551310 PMCID: PMC9775668 DOI: 10.3390/biom12121881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Molecular farming utilizes plants as a platform for producing recombinant biopharmaceuticals. Duckweed, the smallest and fastest growing aquatic plant, is a promising candidate for molecular farming. However, the efficiency of current transformation methods is generally not high in duckweed. Here, we developed a fast and efficient transformation procedure in Lemna minor ZH0403, requiring 7-8 weeks from screening calluses to transgenic plants with a stable transformation efficiency of 88% at the DNA level and 86% at the protein level. We then used this transformation system to produce chicken interleukin-17B (chIL-17B). The plant-produced chIL-17B activated the NF-κB pathway, JAK-STAT pathway, and their downstream cytokines in DF-1 cells. Furthermore, we administrated chIL-17B transgenic duckweed orally as an immunoadjuvant with mucosal vaccine against infectious bronchitis virus (IBV) in chickens. Both IBV-specific antibody titer and the concentration of secretory immunoglobulin A (sIgA) were significantly higher in the group fed with chIL-17B transgenic plant. This indicates that the duckweed-produced chIL-17B enhanced the humoral and mucosal immune responses. Moreover, chickens fed with chIL-17B transgenic plant demonstrated the lowest viral loads in different tissues among all groups. Our work suggests that cytokines are a promising adjuvant for mucosal vaccination through the oral route. Our work also demonstrates the potential of duckweed in molecular farming.
Collapse
|
20
|
Gong H, Ni R, Qiu R, Wang F, Yan W, Wang K, Li H, Fu X, Chen L, Lei C, Wang HN, Yang X. Evaluation of a novel recombinant strain of infectious bronchitis virus emerged from three attenuated live vaccine strains. Microb Pathog 2022; 164:105437. [DOI: 10.1016/j.micpath.2022.105437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
|