1
|
Liu S, Yin J, Cong K, Yue S, Zhang Y, Sun J, Ren X, Jiang K, Liu Y, Zhao X. Synergistic transcriptomic and metabolomic analyses in Zi geese ovaries with different clutch lengths. Poult Sci 2025; 104:105210. [PMID: 40294555 DOI: 10.1016/j.psj.2025.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025] Open
Abstract
The clutch is defined as consecutive days of oviposition. Clutch length is an index that reflects ovulation persistence, and is highly correlated with egg production in birds. To identify the genetic markers associated with clutch length in geese, two consecutive experiments were conducted. In the first experiment, 200 Zi geese were selected, all 230 days old, were selected from the same batch and raised individually in the same environment. Data of egg-laying and clutch traits were recorded. After the laying period, three geese with the longest clutch lengths were selected to form the length clutch group (LCG) and three geese with the shortest clutch lengths were formed the short clutch group (SCG). In the second experiment, the ovaries of six geese were collected for transcriptomic and metabolomic analyses. The results showed that large clutch length (LCL) and average clutch length (ACL) were positively correlated with egg number (EN) (P < 0.01; r = 0.63 and 0.60, respectively). Large clutch number (LCN) was significantly correlated with the peak egg number (PEN) (r = 0.58, P < 0.01) and EN (r = 0.60, P < 0.01). EN, LCN, LCL, and ACL showed significant differences (P < 0.01) between the two clutch length groups. Transcriptomic analysis identified 424 differentially expressed genes (DEGs). Functional enrichment analysis revealed that these DEGs were mainly involved in neuroactive ligand-receptor interactions, ovarian steroidogenesis, and calcium signaling pathways. Further, AVPR1A, FGF14, and LHCGR were predicted as the key genes regulating LCL. Metabolomic analysis identified 349 differential metabolites (DMs) in both the positive and negative ion modes. Pyruvate, isocitric acid, D/L‑serine, 3-phospho-d-glycerate, succinate, glycine, and glutamic acid were identified as the key metabolites mainly enriched in the signaling pathways of the TCA cycle. Integration of transcriptomic and metabolomic data revealed critical gene-metabolite pairs, including ACSL4-phosphoenolpyruvate, implicated in LCL regulation. In summary, this study provides new insights into the genes and molecular markers affecting LCL in Zi geese.
Collapse
Affiliation(s)
- Shengjun Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Jiaxin Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Kexin Cong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Shan Yue
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin 150086, PR China.
| | - Yuanliang Zhang
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin 150086, PR China.
| | - Jinyan Sun
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin 150086, PR China
| | - Xiaofang Ren
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Ke Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Yunuo Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Xiuhua Zhao
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin 150086, PR China.
| |
Collapse
|
2
|
Chen Z, Wen D. Ovarian Transcriptome Profile from Egg-Laying Period to Incubation Period of Changshun Green-Shell Laying Hens. Genes (Basel) 2025; 16:394. [PMID: 40282353 PMCID: PMC12026841 DOI: 10.3390/genes16040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The Changshun green-shell laying hen with a strong broodiness is a Chinese indigenous chicken breed. Little is known about the mechanisms responsible for the ovary development of Changshun green-shell laying hens from the egg-laying period (LP) to the incubation period (BP). Methods: A total of six hens were selected from LP (n = three) and BP (n = three) at 28 weeks old. The RNA sequencing (RNA-seq) of ovaries from hens in LP and BP groups was performed to identify candidate genes and pathways associated with broodiness. Results: We identified 1650 differently expressed genes (DEGs), including 429 up-regulated and 1221 down-regulated DEGs, in chicken ovaries between LP and BP groups. Gene ontology term (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these DEGs were mainly involved in the pathways related to follicle development in chicken ovaries, including focal adhesion, the MAPK signaling pathway, and the FoxO signaling pathway, and vascular smooth muscle contraction, ECM-receptor interaction, and the GnRH signaling pathway were down-regulated in incubating ovaries. Eight candidate genes (EGFR, VEGFRKDRL, FLT1, KDR, PDGFRA, TEK, KIT and FGFR3) related to angiogenesis, folliculogenesis, steroidogenesis and oogenesis in ovaries were suggested to play important roles in the ovarian development of Changshun hens during the transition from LP to BP. Conclusions: This study identified a range of genes and several pathways that may be involved in regulating the broodiness of Changshun green-shell laying hens. These data are helpful to further enrich our understanding of the mechanism of incubation behaviour in chickens.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China;
| | | |
Collapse
|
3
|
Wang C, Wang Q, Li Y, Wang Z, Hou B, Zhou N, Cui W, Hu S, Xiao Y, Zhang W, Zhou H, Li Z, Zhou Z. Plasma metabolomics of Mycoplasma synoviae infection in SPF White Leghorn hens by liquid chromatography-tandem mass spectrometry. Vet Res 2025; 56:65. [PMID: 40121482 PMCID: PMC11929215 DOI: 10.1186/s13567-025-01494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/09/2024] [Indexed: 03/25/2025] Open
Abstract
Mycoplasma synoviae (M. synoviae) is a major bacterial pathogen that causes serious economic losses in the global poultry industry. Systemic changes in specific pathogen free White Leghorn egg-laying hens after M. synoviae infection were investigated using intra-tracheally inoculated animals. Samples were collected 10 days post-infection (dpi) (204-day-old) and 52 dpi (246-day-old). Infection caused air sac lesion, footpad swelling and oviduct atrophy. The qPCR and in situ hybridization showed that bacteria colonized the trachea and oviduct, and that bacterial loads in the magnum and uterus were significantly higher than in the infundibulum and isthmus. Histopathological examination revealed increased tracheal mucosal thickening accompanied by inflammatory cell infiltration, and that tubular glands of the uterus were edematous or dissolved. Infection also induced decreased egg production and eggshell strength, and eggshell apex abnormalities appeared at 14 dpi. Plasma metabolomics of hens analyzed by liquid chromatography-tandem mass spectrometry showed 168 and 128 differentially-expressed metabolites (DEM) at 10 and 52 dpi, respectively. Pathway analysis revealed that DEM at 10 dpi were enriched in five distinctive pathways: regulation of the actin cytoskeleton, neuroactive ligand-receptor interaction, sphingolipid metabolism, gap junctions, and necroptosis. In contrast, DEM at 52 dpi were enriched in fifteen pathways involved in steroid hormone biosynthesis, ferroptosis, the calcium signaling pathway, apelin signaling pathway, progesterone-mediated oocyte maturation, and oocyte meiosis. Combined metabolic analysis demonstrated that changes in ethylsalicylate, nicotinamide, (3-Methoxy-4-hydroxyphenyl) ethylene glycol sulfate, sphingosine-1-phosphate (d18:1), carnitine C24:6, and 15(R)-prostaglandin E1 correlated the best with M. synoviae infection. This study provides new insights into understanding pathogen mechanisms and signposts novel treatments for M. synoviae infection in poultry.
Collapse
Affiliation(s)
- Chun Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Qing Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yang Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhaoyang Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Naiji Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Weitao Cui
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
4
|
Yang L, Li P, Huang X, Wang C, Zeng Y, Wang J, Yao X, Meng J. Effects of Combined Transcriptome and Metabolome Analysis Training on Athletic Performance of 2-Year-Old Trot-Type Yili Horses. Genes (Basel) 2025; 16:197. [PMID: 40004526 PMCID: PMC11855102 DOI: 10.3390/genes16020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVES Training is essential for enhancing equine athletic performance, but the genetic mechanisms that regulate athletic performance are unknown. Therefore, this paper aims to identify candidate genes and metabolic pathways for the effects of training on equine athletic performance through multi-omics analyses. METHODS The experiment selected 12 untrained trot-type Yili horses, which underwent a 12-week professional training program. Blood samples were collected at rest before training (BT) and after training (AT). Based on their race performance, whole blood and serum samples from 4 horses were chosen for transcriptomic and metabolomic analyses. RESULTS The race performance of the horses is dramatically improved in the AT period compared to the BT (p < 0.01) period. The transcriptome analysis identified a total of 57 differentially expressed genes, which were significantly enriched in pathways related to circadian entrainment, steroid hormone biosynthesis, chemokine signaling, and cholinergic synapses (p < 0.05). Additionally, metabolomic analysis revealed 121 differentially identified metabolites, primarily enriched in metabolic pathways such as histidine metabolism, purine metabolism, and the PI3K-Akt signaling pathway. The integration of transcriptomic and metabolomic analyses uncovered five shared pathways, and further combined pathway analyses identified eight differentially expressed genes that correlate with 19 differentially identified metabolites. CONCLUSIONS The current findings will contribute to establishing a theoretical framework for investigating the molecular mechanisms of genes associated with the impact of training on equine athletic performance. Additionally, these results will serve as a foundation for enhancing the athletic capabilities of trot-type Yili horses.
Collapse
Affiliation(s)
- Liping Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
| | - Pengcheng Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
| | - Xinxin Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
| | - Chuankun Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Xinjiang Agricultural University, Urumqi 830052, China
- Horse Industry Research Institute, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Xinjiang Agricultural University, Urumqi 830052, China
- Horse Industry Research Institute, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Xinjiang Agricultural University, Urumqi 830052, China
- Horse Industry Research Institute, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.Y.); (P.L.); (X.H.); (C.W.); (Y.Z.); (J.W.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Xinjiang Agricultural University, Urumqi 830052, China
- Horse Industry Research Institute, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
5
|
Bello SF, Xu H, Bolaji UFO, Aloryi KD, Adeola AC, Gibril BAA, Popoola MA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Expression profiling and single nucleotide polymorphism of mitogen-activated protein kinase kinase kinase 8 MAP3K8 in white muscovy ducks (Cairina moschata). Gene 2025; 932:148901. [PMID: 39209181 DOI: 10.1016/j.gene.2024.148901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
A previous study on ovarian and hypothalami transcriptome analysis in white Muscovy duck revealed that MAP3K8 gene participated in MAPK signaling pathway that influence egg production. Additionally, MAP3K8 was predicted as a target gene of miRNA-509-3p that promotes the secretion of oestradiol which is an important hormone in egg ovulation. This suggested that MAP3K8 might have a functional role in the reproductive performance "egg production" of white Muscovy ducks. Herein, we focused on expression level of MAP3K8 in reproductive and non-reproductive tissues of highest (HP) and lowest (LP) egg producing white Muscovy ducks and identified the polymorphism in MAP3K8 and its association with three egg production traits; Age at first egg (AFE), number of eggs at 300 days (N300D) and 59 weeks (N59W). The results of expression level indicated that mRNA of MAP3K8 was significantly (p < 0.01) expressed in the oviduct than in the ovary and hypothalamus. Seven synonymous SNPs were detected, and association analysis showed that g.148303340 G>A and g.148290065 A>G were significantly (p < 0.05) associated with N300D and N59W. The results of this study might serve as molecular marker for marker-assisted selection of white Muscovy ducks for egg production.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Agriculture Research Group, Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305-00100, Nairobi, Kenya
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Umar-Faruq Olayinka Bolaji
- Department of Animal Production, College of Food Science and Agriculture King Saud University, Riyadh, Saudi Arabia
| | - Kelvin Dodzi Aloryi
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Adeniyi Charles Adeola
- Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 Yunnan, China
| | - Bahareldin Ali Abdalla Gibril
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
| | - Moshood Abiola Popoola
- Federal College of Animal Health and Production Technology, Moor Plantation, Apata, Ibadan, Nigeria; National Dairy Research Institute, Karnal, India
| | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China.
| |
Collapse
|
6
|
Wang H, Zhang L, Wei Y, Liu H, Wang Y, Ge Y, Pan Y. Transcriptome analyses of shell color and egg production traits between the uteruses of blue-green eggshell chickens and Hy-Line brown layers. Poult Sci 2024; 103:104438. [PMID: 39471669 PMCID: PMC11550360 DOI: 10.1016/j.psj.2024.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024] Open
Abstract
Blue-green eggs exhibit unique shell color; however, compared to commercial layers, blue-green eggshell chickens have lower egg production and lack uniform shell colors. Aiming to confirm the molecular mechanisms that affect shell color and egg production, this study collected the uteruses of 12 blue-green eggshell chickens (BG group) and six Hy-Line layers (Brown group), which had significantly different shell color indexes (SCI) and egg numbers at 300 days of age (EN300). Transcriptome sequencing and comparative analyses were subsequently performed. BG hens were divided into two groups for comparative analysis (BGblue vs. BGgreen and BGlow vs. BGhigh, respectively), based on the differences in SCI and EN300, respectively. The result of weighted gene co-expression network (WGCNA) analysis showed that the sequenced and mapped 16,785 genes were clustered into 18 modules, among which six modules with a total of 4270 genes were highly correlated with SCI and EN300 traits. Five hundred and eleven differentially expressed genes (DEGs) belonged to the six key modules. Through KEGG mapping, GO enrichment, and Cytoscape network analysis, nine Hub genes were tightly associated with SCI and EN300. The up-regulated genes were CCR2, CCR8, CD40LG, IL18RAP, INHBA, and P2RY13, while the down-regulated genes were ABCA13, ADCY2, and GRM1. Co-analyses with the results of comparisons between the BG subgroups revealed that the expression of solute carrier (SLC) proteins and ABC transporters were highly related to eggshell color, while cytokine-cytokine receptor interactions and neuroactive ligand-receptor interactions were key pathways affecting egg production. The expression of extracellular cytokines and membrane receptors were significantly up-regulated in low-yield chickens. The candidate DEGs and pathways found in the study will assist in clarifying the molecular mechanisms affecting shell color and egg production, and improve the breeding of blue-green eggshell chickens.
Collapse
Affiliation(s)
- Huanhuan Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lei Zhang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Yinghui Wei
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Hang Liu
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Yanlu Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Ying Ge
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Liu C, Liu P, Liu S, Guo H, Zhu T, Li W, Wang K, Kang X, Sun G. Genetic structure, selective characterization and specific molecular identity cards of high-yielding Houdan chickens based on genome-wide SNP. Poult Sci 2024; 103:104325. [PMID: 39316988 PMCID: PMC11462333 DOI: 10.1016/j.psj.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
The high-yielding Houdan chicken (GGF) is characterized by high egg production and disease resistance. This study conducted whole genome resequencing of the GGF population and compared it to data from other breeds. Genetic diversity analysis revealed higher observed heterozygosity (Ho), Polymorphism information content (PIC), number of runs of homozygosity (ROH), and inbreeding coefficient (FROH) in GGF. Linkage disequilibrium (LD) decay was slowest in GGF, indicating intensive inbreeding and strong selection. These findings suggest a need for appropriate strategies to enhance genetic diversity conservation in this breed. Population structure analysis demonstrated that GGF was genetically distinct from both the red jungle fowl (RJF) and Chinese indigenous chicken (CIC) populations, highlighting GGF as a unique genetic resource warranting intensive protection and utilization. Selective sweep analysis identified genes under selection in GGF, primarily enriched in signaling pathways related to oocyte meiosis and progesterone-mediated oocyte maturation. Key candidate genes included: CCNE1, SKP1, CDC20, CDK2, ADCY8, RPS6KA6, PPP3CB, PDE3B, HSP90AB1, and AKT3. These findings provide a theoretical foundation for their potential application in poultry breeding. Additionally, this study combined bioinformatics analysis with PCR amplification and Sanger sequencing to identify 4 SNPs that can serve as a molecular identity card (ID) for GGF: SNP1 (Chr2: 136130976), SNP3 (Chr4:11705164), SNP4 (Chr4: 63255588), and SNP5 (Chr24: 3271008). This study provides a scientific basis for effective management and conservation of GGF genetic resources, and establishes a simple, economical, and accurate set of molecular IDs to combat the proliferation of inferior breeds and protect genetic resources.
Collapse
Affiliation(s)
- Cong Liu
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China
| | - Pingquan Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuangxing Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Haishan Guo
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingqi Zhu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenting Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
8
|
Xu M, Tang Q, Qi J, Han X, Tao Q, Lu Y, Bai Y, Hu S, Li L, Bai L, Hu J, Wang J, Liu H. Integration of GWAS and transcriptomic analyses reveal candidate genes for duck gonadal development during puberty onset. BMC Genomics 2024; 25:1151. [PMID: 39614145 DOI: 10.1186/s12864-024-11079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Puberty onset signifies the beginning of sexual maturation and reproductive phase in poultry indeed, and plays an essential role in genetics and breeding. Studying gonadal development is one of the important approaches to exploring the genetic mechanism of puberty onset. RESULT In our study, the phenotype data of the testes and ovaries of the 120-day-old Nonghua duck showed a large coefficient of variation, indicating that their gonads were in different developmental states. The CNV-based GWAS results for 358 Nonghua ducks showed two deleted-type CNVRs were associated with testicular weight (TW) and testicular percentage (TP), namely CNVR492 (Chr2: 59473501-59478500 bp) and CNVR494 (Chr2: 59514001-59517000 bp). Additionally, two both-type CNVRs were associated with ovarian weight (OW) and ovarian percentage (OP), namely CNVR557 (Chr2: 99951001-99956500 bp) and CNVR891 (Chr7: 39115001-39122500 bp). RNA-seq analysis showed 6228 and 1070 differentially expressed genes (DEGs) related to the TW and OW. These DEGs were mainly enriched in the MAPK signaling pathway, cytokine-cytokine receptor interaction, and focal adhesion, which were reported to affect gonadal development. Further, by joint analysis of CNV-based GWAS and RNA-seq data, 3 genes, including LOC106019197, CDH19 (LOC101793040), and TYW5 were identified as potential candidate genes for TW and OW. LOC106019197 and CDH19 were down-regulated in the heavier-testes group (> 5 g), while TYW5 was also down-regulated in the heavier-ovaries group (> 3 g). The qRT-PCR revealed that LOC106019197 and CDH19 exhibited higher expression levels in the wild/CN0 and CN0/CN0 genotypes compared to the wild/wild genotype. TYW5 showed the highest expression level in the wild/CN0 genotype and the lowest in the CN2/CN2 genotype. In addition, the expression levels of LOC106019197 and CDH19 were significantly higher at 0w than at 8w and 24w. CONCLUSION Our results revealed that LOC106019197 and CDH19 may act as inhibitors of duck testicular development. TYW5 may play a role in delaying ovarian development. These findings provide new insights into the mechanism of puberty onset in ducks.
Collapse
Affiliation(s)
- Mengru Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Qian Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Xu Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Qiuyu Tao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Yinjuan Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Yuan Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China.
| |
Collapse
|
9
|
Li R, Wang Y, Xie F, Tong X, Li X, Ren M, Hu Q, Li S. Construction and Analysis of miRNA-mRNA Interaction Network in Ovarian Tissue of Wanxi White Geese Across Different Breeding Stages. Animals (Basel) 2024; 14:3258. [PMID: 39595311 PMCID: PMC11591532 DOI: 10.3390/ani14223258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Ovarian development significantly influences the laying performance of geese. In this study, the transcriptome analysis was conducted on the ovarian tissues of Wanxi White Geese during the pre-laying (KL), laying (CL), and ceased-laying period (XL). Short Time-series Expression Miner (STEM) analysis and miRNA-mRNA regulatory network construction were performed to identify the key genes and miRNAs regulating laying traits. Comparative analysis of KL vs. CL, CL vs. XL, and XL vs. KL groups resulted in the identification of 337, 136, and 525 differentially expressed genes (DEGs), and 258, 1131, and 909 differentially expressed miRNAs (DEMs), respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis (p < 0.05) revealed that the main enrichment pathways of DEGs and DEMs at different breeding periods were Neuroactive ligand-receptor interaction, GnRH signaling pathway and Wnt signaling pathway, all associated with ovarian development. According to the three groups of common pathways, four DEGs were screened out, including INHBB, BMP5, PRL, and CGA, along with five DEMs, including let-7-x, miR-124-y, miR-1-y, and miR-10926-z, all of them may affect ovarian development. A miRNA-mRNA regulatory network was constructed through integrated analysis of DEGs and DEMs, revealing nine miRNAs highly associated with ovarian development: miR-101-y, let-7-x, miR-1-x, miR-17-y, miR-103-z, miR-204-x, miR-101-x, miR-301-y, and miR-151-x. The dual-luciferase reporter gene verified the target relationship between WIF1 and miR-204-x, suggesting that these miRNAs may influence ovarian development in Wanxi White Goose by regulating the expression levels of their target genes within ovarian tissue. This study provides a theoretical foundation for analyzing the mechanisms of ovarian development across different breeding periods and accelerating the cultivation of new breeds through post-transcriptional regulation levels.
Collapse
Affiliation(s)
- Ruidong Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Yuhua Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Fei Xie
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Xinwei Tong
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (R.L.); (Y.W.); (F.X.); (X.T.); (X.L.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| |
Collapse
|
10
|
Lien CY, Tixier-Boichard M, Wu SW, Chen CF. Identification of quantitative trait locus and positional candidate loci influencing chicken egg quality under tropical conditions. Trop Anim Health Prod 2024; 56:359. [PMID: 39460847 DOI: 10.1007/s11250-024-04197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024]
Abstract
Egg quality is a vital factor in the poultry industry. High-quality eggs not only meet consumer expectations for appearance, taste, and nutritional value but also have high marketability, profitability, and consumer satisfaction. Accordingly, we executed our research with the purpose of determining chromosomal regions and genetic markers associated with egg quality in an F2 cross-bred chicken population under tropical conditions; we determined these through a genome-wide association study and quantitative trait locus (QTL) mapping. This population was created by cross-breeding the L2 line of Taiwan Country chickens, which is adapted to local conditions in Taiwan, with an experimental line (R-line) of Rhode Island Red layer chickens, which was developed by the French National Research Institute for Agriculture, Food and the Environment. A 60 K single nucleotide polymorphism (SNP) genotyping array for chickens was employed to execute the analysis. Our analysis revealed 40 QTLs associated with egg quality under tropical conditions, namely 20 QTLs with genome-wide statistical significance and 20 QTLs with chromosome-wide statistical significance. Furthermore, we identified 93 SNPs exerting discernible effects on egg quality, with 10 of these effects exhibiting genome-wide significance and 83 exhibiting potential significance. The majority of the detected QTL regions and SNPs agreed with those identified as having an association with egg quality or production traits in previous studies, thus supporting the interrelationships determined between the studied characteristics. The findings of this study enhance the understanding regarding the genetic regulation governing chicken egg quality, thereby serving as a valuable reference for future functional investigations.
Collapse
Affiliation(s)
- C Y Lien
- Northern Region Branch, Taiwan Livestock Research Institute, Ministry of Agriculture No. 80 Tuonong Rd., Beidou Township, 52149, Changhua County, ROC, Taiwan
| | - M Tixier-Boichard
- University Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - S W Wu
- Fonghuanggu Bird and Ecology Park, National Museum of Natural Science, 1-9 Renyi Rd., Lugu Township, 55841, Nantou County, ROC, Taiwan
| | - C F Chen
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Rd., South Dist., 40227, Taichung, ROC, Taiwan.
| |
Collapse
|
11
|
Yang L, Jia C, Li Y, Zhang Y, Ge K, She D. The hypothalamic transcriptome reveals the importance of visual perception on the egg production of Wanxi white geese. Front Vet Sci 2024; 11:1449032. [PMID: 39372898 PMCID: PMC11450866 DOI: 10.3389/fvets.2024.1449032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
Egg performance significantly impacts the development of the local goose industry. The hypothalamus plays an essential role in the egg production of birds. However, few potential candidate genes and biological functions related to egg production in geese have been identified in hypothalamus tissue. In this study, 115 geese were raised and observed for 5 months during the laying period. To understand the regulation mechanism of egg production, the hypothalamus transcriptome profiles of these geese were sequenced using RNA-seq. The hypothalamus samples of four high egg production (HEP) and four low egg production (LEP) geese were selected and collected, respectively. A total of 14,679 genes were identified in the samples. After multiple bioinformatics analyses, Gene Ontology (GO) annotations indicated that genes related to egg production were mainly enriched in biological processes of "response to light stimulus," "sensory system development," and "visual perception." Six potential candidate genes (PDE6C, RHO, MFRP, F2, APOB, and IL6) based on their corresponding GO terms and interaction networks were identified. These identified candidate genes can be used as selection markers to improve the egg production of Wanxi white geese. Our study highlights how visual perception may affect the regulation of geese egg production.
Collapse
Affiliation(s)
- Lei Yang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Changze Jia
- Animal Husbandry Development Center of Lu’ an City, Lu’an, China
| | - Yanzhong Li
- Anhui Wanxi White Goose Seed Farm Co., LTD., Lu’an, China
| | - Yafei Zhang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Kai Ge
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Deyong She
- Lu’ an Academy of Agricultural Sciences, Lu’an, China
| |
Collapse
|
12
|
Sun Y, Li Y, Jiang X, Wu Q, Lin R, Chen H, Zhang M, Zeng T, Tian Y, Xu E, Zhang Y, Lu L. Genome-wide association study identified candidate genes for egg production traits in the Longyan Shan-ma duck. Poult Sci 2024; 103:104032. [PMID: 39003796 PMCID: PMC11298941 DOI: 10.1016/j.psj.2024.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Egg production is an important economic trait in layer ducks and understanding the genetics basis is important for their breeding. In this study, a genome-wide association study (GWAS) for egg production traits in 303 female Longyan Shan-ma ducks was performed based on a genotyping-by-sequencing strategy. Sixty-two single nucleotide polymorphisms (SNPs) associated with egg weight traits were identified (P < 9.48 × 10-5), including 8 SNPs at 5% linkage disequilibrium (LD)-based Bonferroni-corrected genome-wide significance level (P < 4.74 × 10-6). One hundred and nineteen SNPs were associated with egg number traits (P < 9.48 × 10-5), including 13 SNPs with 5% LD-based Bonferroni-corrected genome-wide significance (P < 4.74 × 10-6). These SNPs annotated 146 target genes which contained known candidate genes for egg production traits, such as prolactin and prolactin releasing hormone receptor. This study identified that these associated genes were significantly enriched in egg production-related pathways (P < 0.05), such as the oxytocin signaling, MAPK signaling, and calcium signaling pathways. It was notable that 18 genes were differentially expressed in ovarian tissues between higher and lower egg production in Shan-ma ducks. The identified potential candidate genes and pathways provide insight into the genetic basis underlying the egg production trait of layer ducks.
Collapse
Affiliation(s)
- Yanfa Sun
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, P.R. China
| | - Yan Li
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, P.R. China
| | - Xiaobing Jiang
- Fujian Provincial Animal Husbandry Headquarters, Fuzhou, Fujian 350003, P.R. China
| | - Qiong Wu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, P.R. China
| | - Rulong Lin
- Longyan Shan-ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan, 364031, P.R. China
| | - Hongping Chen
- Longyan Shan-ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan, 364031, P.R. China
| | - Min Zhang
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, P.R. China
| | - Tao Zeng
- Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Yong Tian
- Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China
| | - Enrong Xu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, P.R. China
| | - Yeqiong Zhang
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, P.R. China
| | - Lizhi Lu
- Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China..
| |
Collapse
|
13
|
Ma H, Lin B, Yan Z, Tong Y, Liu H, He X, Zhang H. Phenotypic Identification, Genetic Characterization, and Selective Signal Detection of Huitang Duck. Animals (Basel) 2024; 14:1747. [PMID: 38929366 PMCID: PMC11201145 DOI: 10.3390/ani14121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The Huitang duck (HT), a long-domesticated elite local breed from Hunan Province, China, with excellent meat quality, has not had its population genetic structure and genomic selective sweeps extensively studied to date. This study measured the phenotypic characteristics of HT and conducted comparative analysis between HT and 16 different duck breeds, including wild, indigenous, and meat breeds, to characterize its population structure and genetic potential. The results revealed that HT is a dual-purpose indigenous breed with a genetic background closely related to the Youxian sheldrake and Linwu ducks. In the selective sweep analysis between HT and Linwu ducks, genes such as PLCG2, FN1, and IGF2BP2, which are associated with muscle growth and development, were identified near the 27 selection signals. The comparison between HT and Jinding ducks revealed 68 selective signals that contained important genes associated with ovarian development (GRIK4, MAP3K8, and TGIF1) and egg-laying behaviors (ERBB4). Selective sweep analysis between HT and Youxian sheldrake ducks found 93 selective regions covering genes related to both meat (IGF1R and IGFBP5) and egg-production (FOXO3 and ITPR1) traits. Our study may provide novel knowledge for exploring the population structure and genetic potential of HT, offering a theoretical basis for its breeding strategies in the future.
Collapse
Affiliation(s)
- Haojie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
| | - Bingjin Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
| | - Zhiyao Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
| | - Yueyue Tong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
| | - Huichao Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.M.); (B.L.); (Z.Y.); (Y.T.); (H.L.); (X.H.)
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, China
| |
Collapse
|
14
|
Xiong H, Li W, Wang L, Wang X, Tang B, Cui Z, Liu L. Whole transcriptome analysis revealed the regulatory network and related pathways of non-coding RNA regulating ovarian atrophy in broody hens. Front Vet Sci 2024; 11:1399776. [PMID: 38868501 PMCID: PMC11168117 DOI: 10.3389/fvets.2024.1399776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Poultry broodiness can cause ovarian atresia, which has a detrimental impact on egg production. Non-coding RNAs (ncRNAs) have become one of the most talked-about topics in life sciences because of the increasing evidence of their novel biological roles in regulatory systems. However, the molecular mechanisms of ncRNAs functions and processes in chicken ovarian development remain largely unknown. Whole-transcriptome RNA sequencing of the ovaries of broodiness and laying chickens was thus performed to identify the ncRNA regulatory mechanisms associated with ovarian atresia in chickens. Subsequent analysis revealed that the ovaries of laying chickens and those with broodiness had 40 differentially expressed MicroRNA (miRNAs) (15 up-regulated and 25 down-regulated), 379 differentially expressed Long Noncoding RNA (lncRNAs) (213 up-regulated and 166 down-regulated), and 129 differentially expressed circular RNA (circRNAs) (63 up-regulated and 66 down-regulated). The competing endogenous RNAs (ceRNA) network analysis further revealed the involvement of ECM-receptor interaction, AGE-RAGE signaling pathway, focal adhesion, cytokine-cytokine receptor interaction, inflammatory mediator regulation of TRP channels, renin secretion, gap junction, insulin secretion, serotonergic synapse, and IL-17 signaling pathways in broodiness. Upon further analysis, it became evident that THBS1 and MYLK are significant candidate genes implicated in the regulation of broodiness. The expression of these genes is linked to miR-155-x, miR-211-z, miR-1682-z, gga-miR-155, and gga-miR-1682, as well as to the competitive binding of novel_circ_014674 and MSTRG.3306.4. The findings of this study reveal the existence of a regulatory link between non-coding RNAs and their competing mRNAs, which provide a better comprehension of the ncRNA function and processes in chicken ovarian development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Song X, Li S, He S, Zheng H, Li R, Liu L, Geng T, Zhao M, Gong D. Integration of Whole-Genome Resequencing and Transcriptome Sequencing Reveals Candidate Genes in High Glossiness of Eggshell. Animals (Basel) 2024; 14:1141. [PMID: 38672292 PMCID: PMC11047648 DOI: 10.3390/ani14081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Eggshell gloss is an important characteristic for the manifestation of eggshell appearance. However, no study has yet identified potential candidate genes for eggshell gloss between high-gloss (HG) and low-gloss (LG) chickens. The aim of this study was to perform a preliminary investigation into the formation mechanism of eggshell gloss and to identify potential genes. The eggshell gloss of 300-day-old Rhode Island Red hens was measured from three aspects. Uterine tissues of the selected HG and LG (n = 5) hens were collected for RNA-seq. Blood samples were also collected for whole-genome resequencing (WGRS). RNA-seq analysis showed that 150 differentially expressed genes (DEGs) were identified in the uterine tissues of HG and LG hens. These DEGs were mainly enriched in the calcium signaling pathway and the neuroactive ligand-receptor interaction pathway. Importantly, these two pathways were also significantly enriched in the WGRS analysis results. Further joint analysis of WGRS and RNA-seq data revealed that 5-hydroxytryptamine receptor 1F (HTR1F), zinc finger protein 536 (ZNF536), NEDD8 ubiquitin-like modifier (NEDD8), nerve growth factor (NGF) and calmodulin 1 (CALM1) are potential candidate genes for eggshell gloss. In summary, our research provides a reference for the study of eggshell gloss and lays a foundation for improving egg glossiness in layer breeding.
Collapse
Affiliation(s)
- Xiang Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Shuo Li
- Jiangsu Beinongda Agriculture and Animal Husbandry Technology Co., Ltd., Taizhou 225300, China
| | - Shixiong He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Hongxiang Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Ruijie Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.S.); (L.L.); (T.G.)
| |
Collapse
|
16
|
Pei S, Wang Z, Liu Y, Xu Y, Bai J, Li W, Li F, Yue X. Transcriptomic analysis of the HPG axis-related tissues reveals potential candidate genes and regulatory pathways associated with testicular size in Hu sheep. Theriogenology 2024; 216:168-176. [PMID: 38185016 DOI: 10.1016/j.theriogenology.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Testicular size is an excellent proxy for selecting high-fertility rams. The hypothalamus-pituitary-gonadal (HPG) axis plays an important role in regulating reproductive capacity in vertebrates, while key genes and regulatory pathways within the HPG axis associated with testicular size remain largely unknown in sheep. This study comprehensively compared the transcriptomic profiles in the hypothalamus, pituitary and testis of rams after sexual maturity between the large-testis group (LTG, testicular weight = 454.29 ± 54.24 g) and the small-testis group (STG, testicular weight = 77.29 ± 10.76 g). In total, 914, 795 and 10518 differentially expressed genes (DEGs) were identified in the hypothalamus, pituitary and testis between LTG and STG, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DEGs were mainly involved in the biological processes of reproduction, biological regulation, and development process. Notably, the neuroactive ligand-receptor interaction and cAMP signaling pathways, commonly enriched by the DEGs in the hypothalamus and pituitary between two groups, were considered as two key signal pathways regulating testicular development through the HPGs axis. Weighted gene co-expression network analysis (WGCNA) identified two modules that were significantly associated with testicular size, and 97 key genes were selected with high module membership (MM) and gene significance (GS) in these two modules. Finally, a protein-protein interaction (PPI) network was constructed, and ten genes with the highest degree were represented as hub genes, including FOS, NPY, SST, F2, AGT, NTS, OXT, EDN1, VIP and TAC1. Taken together, these results provide new insights into the molecular mechanism underlying the HPG axis regulating testicular size of Hu sheep.
Collapse
Affiliation(s)
- Shengwei Pei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhongyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yangkai Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yanli Xu
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi, 830057, China
| | - Jingjing Bai
- Animal Husbandry and Veterinary Extension Station of Wuwei City, Wuwei, 733000, China
| | - Wanhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
17
|
He Z, Ouyang Q, Chen Q, Song Y, Hu J, Hu S, He H, Li L, Liu H, Wang J. Molecular mechanisms of hypothalamic-pituitary-ovarian/thyroid axis regulating age at first egg in geese. Poult Sci 2024; 103:103478. [PMID: 38295497 PMCID: PMC10844868 DOI: 10.1016/j.psj.2024.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Age at first egg (AFE) has consistently garnered interest as a crucial reproductive indicator within poultry production. Previous studies have elucidated the involvement of the hypothalamic-pituitary-ovarian (HPO) and hypothalamic-pituitary-thyroid (HPT) axes in regulating poultry sexual maturity. Concurrently, there was evidence suggesting a potential co-regulatory relationship between these 2 axes. However, as of now, no comprehensive exploration of the key pathways and genes responsible for the crosstalk between the HPO and HPT axes in the regulation of AFE has been reported. In this study, we conducted a comparative analysis of morphological differences and performed transcriptomic analysis on the hypothalamus, pituitary, thyroid, and ovarian stroma between normal laying group (NG) and abnormal laying group (AG). Morphological results showed that the thyroid index difference (D-) value (thyroid index D-value=right thyroid index-left thyroid index) was significantly (P < 0.05) lower in the NG than in the AG, while the ovarian index was significantly (P < 0.01) higher in the NG than in the AG. Furthermore, between NG and AG, we identified 99, 415, 167, and 1182 differentially expressed genes (DEGs) in the hypothalamus, pituitary, thyroid, and ovarian stroma, respectively. Gene ontology (GO) analysis highlighted that DEGs from 4 tissues were predominantly enriched in the "biological processes" category. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that 16, 14, 3, and 26 KEGG pathways were significantly enriched (P < 0.05) in the hypothalamus, pituitary, thyroid, and ovarian stroma. The MAPK signaling pathway emerged as the sole enriched pathway across all 4 tissues. Employing an integrated analysis of the protein-protein interaction (PPI) network and correlation analysis, we found GREB1 emerged as a pivotal component within the HPO axis to regulate estrogen-related signaling in the HPT axis, meanwhile, the HPT axis influenced ovarian development by regulating thyroid hormone-related signaling mainly through OPN5. Then, 10 potential candidate genes were identified, namely IGF1, JUN, ERBB4, KDR, PGF, FGFR1, GREB1, OPN5, DIO3, and THRB. These findings establish a foundation for elucidating the physiological and genetic mechanisms by which the HPO and HPT axes co-regulate goose AFE.
Collapse
Affiliation(s)
- Zhiyu He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qingliang Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yang Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
18
|
Li L, Xin Q, Zhang L, Miao Z, Zhu Z, Huang Q, Zheng N. Analysis of circRNA-miRNA-mRNA regulatory network of embryonic gonadal development in Mulard duck. Poult Sci 2024; 103:103303. [PMID: 38096667 PMCID: PMC10762475 DOI: 10.1016/j.psj.2023.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
The aim of the study was to explore the regulatory mechanism of differences in embryonic gonadal development between intergeneric distance hybrid offspring Mulard ducks and parent ducks. The morphological differences gonadal tissues of Muscovy ducks, Pekin ducks and Mulard ducks at 12.5-day embryonic age were observed by sectioning and hematoxylin-eosin (HE) staining. Then followed by transcriptome sequencing to screen for gonadal development-related differentially expressed circRNAs and mRNAs to construct a competitive endogenous RNA (ceRNA) regulatory network. Finally, qRT-PCR and luciferase reporter system were used to verify the sequencing data and targeting relationship of ceRNA pairs. The results showed that the seminiferous tubule lumen of Mulard ducks was not obvious, while there were obvious seminiferous tubules and tubular structures in testis of Pekin ducks and Muscovy ducks, with number and shape indicating maturity. There were 18 upregulated circRNAs and 16 downregulated circRNAs in Mulard ducks and Pekin ducks, respectively, and 39 upregulated circRNAs and 1 downregulated circRNA in Mulard ducks and Muscovy ducks, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis found that genes involves in dorso-ventral axis formation, for example, neurogenic locus notch homolog protein 1 (NOTCH1), were significantly enriched (P < 0.05). The novel_circ_0002265-gga-miR-122-5p-PAFAH1B2 regulatory network was constructed. The qRT-PCR results showed that the sequencing results were reliable. The dual-luciferase reporter assay showed that gga-miR-122-5p exists binding site of circ_0002265 and PAFAH1B2, indicating circ_0002265-gga-miR-122-5p-PAFAH1B2 targeting relationship. In summary, the embryonic gonadal development of intergeneric hybrid Mulard ducks may be regulated by differentially expressed circRNAs and genes, such as novel_circ_0000519, novel_circ_0003537, NOTCH1, FGFR2, PAFAH1B1, and PAFAH1B2, among which circ_0002265-gga-miR-122-5p-PAFAH1B2 may participate in the targeted regulation of gonadal development in Mulard ducks. The findings of this study are helpful for analyzing the mechanism of embryonic gonadal development differences in avians.
Collapse
Affiliation(s)
- Li Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Qingwu Xin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Linli Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Zhongwei Miao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Zhiming Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Qinlou Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Nenzhu Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China.
| |
Collapse
|
19
|
Yang X, Wang W, Wang X, Zhang D, Li X, Zhang Y, Zhao Y, Zhao L, Wang J, Xu D, Cheng J, Li W, Zhou B, Lin C, Zeng X, Zhai R, Ma Z, Liu J, Cui P, Zhang X. Polymorphism in ovine ADCY8 gene and its association with residual feed intake in Hu sheep. Anim Biotechnol 2023; 34:3355-3362. [PMID: 36384395 DOI: 10.1080/10495398.2022.2145294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Feed efficiency makes up a large part of sheep production, which also has a crucial impact on the economic benefits of producers. This study explores the polymorphism of Adenylyl cyclase 8 gene associated with feed efficiency and detects the expression characteristics of ADCY8 in ten tissues of Hu sheep. The polymorphism of ADCY8 was recognized by using PCR amplification and Sanger sequencing, KASPar technology was used for genotyping subsequently, and the relationship between SNP and RFI is also studied. The results indicated that an intronic mutation g.24799148 C > T (rs 423395741) was identified in ADCY8, and association analysis showed that the SNP g.24799148 C > T (rs 423395741) was significantly associated with RFI at 100-120, 100-140, 100-160, and 100-180 days (p < 0.05). The quantitative real-time PCR (qRT-PCR) result showed that ADCY8 was expressed in ten tissues, and the expression of ADCY8 gene in rumen tissue was significantly higher than in the other tested tissues. Therefore, these results indicated that the ADCY8 mutation locus may be used as a candidate molecular marker for evaluating the feed efficiency of Hu sheep.
Collapse
Affiliation(s)
- Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
20
|
He HY, Liu LL, Chen B, Xiao HX, Liu WJ. Study on lactation performance and development of KASP marker for milk traits in Xinjiang donkey ( Equus asinus). Anim Biotechnol 2023; 34:2724-2735. [PMID: 36007548 DOI: 10.1080/10495398.2022.2114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Donkey milk has high nutritional and medicinal value, but there are few researches in donkey milk traits, especially on genome. The whole lactation of 89 donkeys was recorded and it was found that Xinjiang donkey had good lactation performance while great differences among individuals. In our previous study, four genes including LGALS2, NUMB, ADCY8 and CA8 were identified as milk-associated with Chinese Kazakh house, based on Equine 670k Chip genomic analysis. And then 15 SNPs of the four key genes were conducted for genotyping in Xinjiang donkey in this study, one of Chinese indigenous breed, 14 SNPs were successful classified. And those SNPs were correlation analysis with milk yield of Xinjiang donkeys. The results showed that NUMB g.46709914T > G was significantly correlated with daily milk yield of Xinjiang donkey in the early, middle, and late periods, while ADCY8 g.48366302T > C, CA8 g.89567442T > G and CA8 g.89598328T > A were significantly correlated with lactation in the late periods. These results indicate that NUMB g.46709914T > G can be as markers of candidate genes for lactating traits in donkeys, SNPs of ADCY8 and CA8 as potential. Our findings will not only help confirm key genes for donkey milk traits, but also provide future for genomic selection in donkeys.
Collapse
Affiliation(s)
- Hai-Ying He
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Ling-Ling Liu
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Bin Chen
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hai-Xia Xiao
- Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Wu-Jun Liu
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
21
|
Uyanga VA, Bello SF, Qian X, Chao N, Li H, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Transcriptomics analysis unveils key potential genes associated with brain development and feeding behavior in the hypothalamus of L-citrulline-fed broiler chickens. Poult Sci 2023; 102:103136. [PMID: 37844531 PMCID: PMC10585647 DOI: 10.1016/j.psj.2023.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
High ambient temperature is a major environmental stressor affecting poultry production, especially in the tropical and subtropical regions of the world. Nutritional interventions have been adopted to combat thermal stress in poultry, including the use of amino acids. L-citrulline is a nonessential amino acid that is involved in nitric oxide generation and thermoregulation, however, the molecular mechanisms behind L-citrulline's regulation of body temperature are still unascertained. This study investigated the global gene expression in the hypothalamus of chickens fed either basal diet or L-citrulline-supplemented diets under different housing temperatures. Ross 308 broilers were fed with basal diet (CON) or 1% L-citrulline diet (LCT) from day-old, and later subjected to 2 environmental temperatures in a 2 by 2 factorial arrangement as follows; basal diet-fed chickens housed at 24°C (CON-TN); L-citrulline diet-fed chickens housed at 24°C (LCT-TN); basal diet-fed chickens housed at 35°C (CON-HS), and L-citrulline diet-fed chickens housed at 35°C (LCT-HS) from 22 to 42 d of age. At 42-days old, hypothalamic tissues were collected for mRNA analyses and RNA sequencing. A total of 1,019 million raw reads were generated and about 82.59 to 82.96% were uniquely mapped to genes. The gene ontology (GO) term between the CON-TN and LCT-TN groups revealed significant enrichments of pathways such as central nervous system development, and Wnt signaling pathway. On the other hand, GO terms between the CON-HS and LCT-HS groups revealed enrichments in the regulation of corticosteroid release, regulation of feeding behavior, and regulation of inflammatory response. Several potential candidate genes were identified to be responsible for central nervous system development (EMX2, WFIKKN2, SLC6A4 Wnt10a, and PHOX2B), and regulation of feed intake (NPY, AgRP, GAL, POMC, and NMU) in chickens. Therefore, this study unveils that L-citrulline can influence transcripts associated with brain development, feeding behavior, energy metabolism, and thermoregulation in chickens raised under different ambient temperatures.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China; Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin Qian
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China
| | - Ning Chao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China
| | - Haifang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jingpeng Zhao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China
| | - Xiaojuan Wang
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China
| | - Hongchao Jiao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China
| | - Okanlawon M Onagbesan
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Hai Lin
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
22
|
Bernardi O, Bourdon G, Estienne A, Brossaud A, Ramé C, Reverchon M, Dupont J. Adipokines expression in reproductive tract, egg white and embryonic annexes in hen. Poult Sci 2023; 102:102908. [PMID: 37478623 PMCID: PMC10387612 DOI: 10.1016/j.psj.2023.102908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
In mammals, molecules mainly secreted by white adipose tissue named adipokines are also synthetized locally in the reproductive tract and are able to influence reproductive functions. In avian species, previous studies indicated that the adipokine chemerin is highly abundant in the albumen, compared to the yolk and this was associated to high chemerin expression in the magnum. In addition, the authors observed that chemerin and its receptors are expressed by allantoic and amniotic membranes and chemerin is present in fluids during the embryo development. Here, we studied other adipokines, including adiponectin, visfatin, apelin, and adipolin in egg white and their known receptors in the active (egg-laying hen) and regressed (hen not laying) oviduct and embryonic annexes during embryo development. By using Western blot, RT-qPCR analysis and immunohistochemistry, we demonstrated the expression of different adipokines in the egg albumen (visfatin) and the reproductive tract (adiponectin, visfatin, apelin, adipolin, and their cognate receptors) according the position of egg in the oviduct. We showed that the expression of adipokines and adipokines receptors was strongly reduced in the regressed oviducts (arrested laying hen). Results indicated that visfatin and adiponectin appeared at ED11 to 14 and increased until ED18 in amniotic fluid whereas it was found from ED7 and was unchanged during embryo development in allantoic fluid. Taken together, adipokines and their receptors are expressed in the egg white, the reproductive tract and the embryonic annexes. Data obtained suggest important functions of theses metabolic hormones during the chicken embryo development. Thus, adipokines could be potential biomarkers to improve the embryo development.
Collapse
Affiliation(s)
- Ophélie Bernardi
- SYSAAF French Poultry and Aquaculture Breeders Technical Center, Research for Agriculture, Food and Environment Institute Val de Loire Center, F-37380 Nouzilly, France; French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France
| | - Guillaume Bourdon
- French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France
| | - Anthony Estienne
- French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France
| | - Adeline Brossaud
- French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France
| | - Christelle Ramé
- French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF French Poultry and Aquaculture Breeders Technical Center, Research for Agriculture, Food and Environment Institute Val de Loire Center, F-37380 Nouzilly, France
| | - Joëlle Dupont
- French National Centre for Scientific Research, French Horse and Riding Institute, Research for Agriculture, Food and Environment Institute, Tours University, Physiology of Reproduction and Behavior Unit, F-37380 Nouzilly, France.
| |
Collapse
|
23
|
Sun J, Xiao J, Jiang Y, Wang Y, Cao M, Wei J, Yu T, Ding X, Yang G. Genome-Wide Association Study on Reproductive Traits Using Imputation-Based Whole-Genome Sequence Data in Yorkshire Pigs. Genes (Basel) 2023; 14:genes14040861. [PMID: 37107619 PMCID: PMC10137786 DOI: 10.3390/genes14040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Reproductive traits have a key impact on production efficiency in the pig industry. It is necessary to identify the genetic structure of potential genes that influence reproductive traits. In this study, a genome-wide association study (GWAS) based on chip and imputed data of five reproductive traits, namely, total number born (TNB), number born alive (NBA), litter birth weight (LBW), gestation length (GL), and number of weaned (NW), was performed in Yorkshire pigs. In total, 272 of 2844 pigs with reproductive records were genotyped using KPS Porcine Breeding SNP Chips, and then chip data were imputed to sequencing data using two online software programs: the Pig Haplotype Reference Panel (PHARP v2) and Swine Imputation Server (SWIM 1.0). After quality control, we performed GWAS based on chip data and the two different imputation databases by using fixed and random model circulating probability unification (FarmCPU) models. We discovered 71 genome-wide significant SNPs and 25 potential candidate genes (e.g., SMAD4, RPS6KA2, CAMK2A, NDST1, and ADCY5). Functional enrichment analysis revealed that these genes are mainly enriched in the calcium signaling pathway, ovarian steroidogenesis, and GnRH signaling pathways. In conclusion, our results help to clarify the genetic basis of porcine reproductive traits and provide molecular markers for genomic selection in pig breeding.
Collapse
Affiliation(s)
- Jingchun Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jinhong Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yifan Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yaxin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Minghao Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jialin Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
24
|
Whole-genome sequencing identifies potential candidate genes for egg production traits in laying ducks (Anas platyrhynchos). Sci Rep 2023; 13:1821. [PMID: 36726023 PMCID: PMC9892591 DOI: 10.1038/s41598-022-21237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/26/2022] [Indexed: 02/03/2023] Open
Abstract
Egg production traits are economically important in laying ducks. Genetic molecular mechanisms and candidate genes underlying these traits remain unclear. In this study, whole genome variants were identified through whole-genome resequencing using three high-egg producing (HEN) and three low-egg producing (LEN) laying ducks. The gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genome (KEGG) pathways for the genes of common differential variants between HEN and LEN ducks were determined. Frizzled class receptor 6 (FZD6) was further genotyped using the Sequenom MassARRAY iPLEX platform. The association of FZD6 gene polymorphisms with 73 egg production and weight traits in 329 female ducks were estimated. A total of 65,535 single nucleotide polymorphisms (SNPs) and 4,702 indels were identified across the genome. Fourteen GO terms and 14 KEGG pathways were determined for the genes of common differential variants, including MAPK signaling, Wnt signaling, melanogenesis and calcium signaling pathways, which are key functional pathways for poultry egg production reported in previous reports. Further analysis showed that 27 SNPs of FZD6 were associated with three early egg production of duck and egg weight traits, including egg production at 17 weeks (EP17), 18 weeks (EP18) and 19 weeks (EP19) and egg weight at 59 weeks (EW59). The FZD6 should be considered a novel candidate gene for egg production traits in laying ducks.
Collapse
|
25
|
Cai D, Wang Z, Zhou Z, Lin D, Ju X, Nie Q. Integration of transcriptome sequencing and whole genome resequencing reveal candidate genes in egg production of upright and pendulous-comb chickens. Poult Sci 2023; 102:102504. [PMID: 36739803 PMCID: PMC9932115 DOI: 10.1016/j.psj.2023.102504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Egg production performance plays an important role in the poultry industry across the world. Previous studies have shown a great difference in egg production performance between pendulous-comb (PC) and upright-comb (UC) chickens. However, there are no reports to identify potential candidate genes for egg production in PC and UC chickens. In the present study, 1,606 laying chickens were raised, and the egg laid by individual chicken was collected for 100 d. Moreover, the expression level of estrogen and progesterone hormones was measured at the start-laying and peak-laying periods of hens. Besides, 4 PC and 4 UC chickens were selected at 217 d of age to perform transcriptome sequencing (RNA-seq) and whole genome resequencing (WGS) to screen the potential candidate genes of egg production. The results showed that PC chicken demonstrated better egg production performance (P < 0.05) and higher estrogen and progesterone hormone expression levels than UC chicken (P < 0.05). RNA-seq analysis showed that 341 upregulated and 1,036 downregulated differentially expressed genes (DEGs) were identified in the ovary tissues of PC and UC chickens. These DEGs were mainly enriched in protein-related, lipid-related, and nucleic acids-related biological processes including ribosome, peptide biosynthetic process, lipid transport terms, and catalytic activity acting on RNA which can significantly affect egg production in chicken. The enrichment results of WGS analysis were consistent with RNA-seq. Further, joint analysis of WGS and RNA-seq data was utilized to screen 30 genes and CAMK1D, CLSTN2, MAST2, PIK3C2G, TBC1D1, STK3, ADGRB3, and PPARGC1A were identified as potential candidate genes for egg production in PC and UC chickens. In summary, our study provides a wealth of information for a better understanding of the genetic and molecular mechanism for the future breeding of PC and UC chickens for egg production.
Collapse
Affiliation(s)
- Danfeng Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Zhijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China,College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an 311300, China
| | - Zhen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Duo Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xing Ju
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
26
|
Wang Y, Wang Y, Wang L, Wei B, Lv X, Huang Y, Zhang H, Chen W. Dietary supplementation with Clostridium butyricum and its ferment substance improves the egg quality and ovarian function in laying hens from 50 to 58 weeks of age. Anim Sci J 2023; 94:e13877. [PMID: 37818858 DOI: 10.1111/asj.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 10/13/2023]
Abstract
The current study was conducted to explore the effects of dietary Clostridium butyricum (C. butyricum) and fermented calcium (Ca) butyrate produced by C. butyricum on the performance and egg quality of post-peak laying. A total of 384 50-week-old hens were fed a basal diet, the basal diet with 300 mg/kg of fermented Ca butyrate or 1 × 109 CFU/kg C. butyricum for 8 weeks. Hens received a C. butyricum exhibited higher yolk properties, albumen height, and Haugh unit. A diet with fermented Ca butyrate or C. butyricum increased the egg mass and the pre-grade yellow follicle number. RNA-sequencing (RNA-seq) data showed that these observations were associated with cytokine-cytokine receptor interaction and intestinal immune status. Accordingly, when compared with the basal diet group, Ca butyrate and C. butyricum addition decreased serum pro-inflammatory cytokine levels and increased the concentration of immunoglobulin A, along with improved intestinal barrier. In addition, dietary C. butyricum inclusion induced a higher abundance of Ruminococcaceae and Lachnospiraceae at the family level. In summary, dietary fermented Ca butyrate or C. butyricum supplementation improved egg quality and ovarian function, which might be related to the enhanced intestinal barrier and immunity in post-peak laying hens.
Collapse
Affiliation(s)
- Yongshuai Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yilu Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Leilei Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Bin Wei
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Xiangyun Lv
- Charoen Pokphand Group Co., Ltd., Zhumadian, Henan, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
27
|
Ju X, Wang Z, Cai D, Xu H, Bello SF, Zhang S, Zhu W, Ji C, Nie Q. TAT gene polymorphism and its relationship with production traits in Muscovy ducks (Cairina Moschata). Poult Sci 2023; 102:102551. [PMID: 36972669 PMCID: PMC10050636 DOI: 10.1016/j.psj.2023.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
In a previous study, the laying pattern of Muscovy duck was explored by macro-fitting the laying curve of Muscovy duck, and transcriptome sequencing technique of the ovarian tissues was used to screen the egg-related gene "TAT." Moreover, recent results have shown that TAT is expressed in organs such as oviduct, ovary, and testis. The objective of this study is to examine the effect of TAT gene on egg production traits of Muscovy ducks. First, the expression levels of TAT gene in highest producing (HP) and lowest producing (LP) in 3 tissues related to reproduction were examined, and the results indicated that the expression of TAT gene in hypothalamus was significantly different between HP and LP groups. Then, 6 SNP loci (g. 120G>T, g, 122G>A, g, 254G> A, g. 270C >T, g, 312G>A, and g. 341C>A) were detected in TAT gene. Further, association analysis between the six SNP loci of TAT gene and egg production traits of 652 individual Muscovy ducks was done. The results showed that g. 254G>A and g. 270C>T were significantly correlated (P < 0.05 or 0.001) with the egg production traits of Muscovy ducks. This study elucidated the molecular mechanism that TAT gene might be regulating the egg production traits of Muscovy ducks.
Collapse
|
28
|
Zhang L, Xie J, Sun G, Ji R, Li X, Zhang X, Wang J. Identification of differentially expressed genes and signaling pathways in Gaoyou duck ovary at different physiological stages. Front Vet Sci 2023; 10:1190998. [PMID: 37206435 PMCID: PMC10189055 DOI: 10.3389/fvets.2023.1190998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Gaoyou duck is famous in China and abroad for its good production of double-yolk eggs. However, there has been no systematic research on the egg-laying characteristics of the Gaoyou duck, which limits the development and utilization of breed resource. Methods To identify the essential genes related to ovarian development, the transcriptome profiles of the ovaries of Gaoyou ducks at different physiological stages were analyzed. The transcriptome profiles of the ovaries of Gaoyou ducks at 150 d (before laying), 240 d (egg laying) and 500 d (nesting) were constructed, and the differentially expressed genes (DEGs) underwent GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses. Results The 6 randomly selected DEGs were verified by real-time fluorescent quantitative PCR that their relative expression was consistent with the transcriptional expression profile. Furthermore, KEGG analysis found that 8 candidate signaling pathways were essential for ovarian development, including the MAPK signaling pathway, Progesterone-mediated oocyte maturation, Cell adhesion molecules (CAMs), NOD-like receptor signaling pathway, ECM-receptor interaction, Focal adhesion, TGF-beta signaling path-way and Phagosome. Finally, 5 key DEGs were identified to participate in ovarian development, including TGIF1, TGFBR2, RAF1, PTK2 and FGF10. Discussion Our findings reveal the mechanisms under-lying the molecular regulation of related genes in Gaoyou duck ovarian development.
Collapse
|
29
|
Zhu Z, Pius Bassey A, Cao Y, Du X, Huang T, Cheng Y, Huang M. Meat quality and flavor evaluation of Nanjing water boiled salted duck (NWSD) produced by different Muscovy duck (Cairina moschata) ingredients. Food Chem 2022; 397:133833. [PMID: 35933751 DOI: 10.1016/j.foodchem.2022.133833] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
Reports on meat quality and flavor evaluation of Nanjing water boiled salted duck (NWSD) produced by different Muscovy duck (Cairina moschata) ingredients are limited. To select a suitable Muscovy duck ingredient for the NWSD processing, six kinds of NWSD products were produced using female (65, 70, and 75 days) and male (75, 80, and 85 days) Muscovy duck ingredients. The meat quality, volatile organic compounds (VOCs), smell and taste were investigated by using colorimeter, texture analyzer, headspace-gas chromatography-ion mobility spectroscopy (HS-GC-IMS), electronic nose (E-nose), electronic tongue (E-tongue), etc. Results exhibited that 32 iconic VOCs were obtained by using partial least squares discrimination analysis (PLS-DA), principal component analysis (PCA), and variable importance projection (VIP) methods. 80-day-old male Muscovy duck showed moderate moisture and protein content, good meat texture and bright color, diverse iconic VOCs and clear differentiation, making it the preferred ingredient for NWSD processing.
Collapse
Affiliation(s)
- Zongshuai Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Anthony Pius Bassey
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaqi Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaolan Du
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianran Huang
- Jiangsu Research Center for Livestock and Poultry Products Processing Engineering Technology, Nanjing Huangjiaoshou Food Science and Technology Co. Ltd., Nanjing 211200, PR China
| | - Yiqun Cheng
- College of Life Sciences, Anhui Normal University, Wuhu 241000, PR China
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Research Center for Livestock and Poultry Products Processing Engineering Technology, Nanjing Huangjiaoshou Food Science and Technology Co. Ltd., Nanjing 211200, PR China.
| |
Collapse
|
30
|
He Z, Chen Q, Ouyang Q, Hu J, Shen Z, Hu B, Hu S, He H, Li L, Liu H, Wang J. Transcriptomic analysis of the thyroid and ovarian stroma reveals key pathways and potential candidate genes associated with egg production in ducks. Poult Sci 2022; 102:102292. [PMID: 36435165 PMCID: PMC9700033 DOI: 10.1016/j.psj.2022.102292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
The importance of thyroid-related genes has been repeatedly mentioned in the transcriptome studies of poultry with different laying performance, yet there are few systematic studies to unravel the regulatory mechanisms of the thyroid-ovary axis in the poultry egg production process. In this study, we compared the transcriptome profiles in the thyroid and ovarian stroma between high egg production (GP) and low egg production (DP) ducks, and then revealed the pathways and candidate genes involved in the process. We identified 1,114 and 733 differentially expressed genes (DEGs) in the thyroid and ovarian stroma, separately. The Gene Ontology (GO) analysis showed that a total of 504 and 189 GO terms were identified in the thyroid and ovarian stroma (P < 0.05). Three common GO terms were identified from the top 5 GO terms with the highest significant level in two tissues, including extracellular space, calcium ion binding, and integral component of plasma membrane. The enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that 15 and 14 KEGG pathways were significantly (P < 0.05) enriched in the thyroid and ovarian stroma, respectively. And, there were 8 common pathways, including neuroactive ligand-receptor interaction, calcium signaling pathway, ECM-receptor interaction, PPAR signaling pathway, melanogenesis, wnt signaling pathway, vascular smooth muscle contraction, and cytokine-cytokine receptor interaction. Notably, the neuroactive ligand-receptor interaction pathway was the most significantly enriched by the DEGs both in the thyroid and ovarian stroma. The interaction among DEGs enriched in the neuroactive ligand-receptor interaction and ECM-receptor interaction suggested that the thyroid may regulate ovarian development by these genes. Through integrated analysis of the protein-protein interaction (PPI) network and KEGG pathway maps, 9 key DEGs (PTH, THBS2, THBS4, CD36, ADIPOQ, ACSL6, PRKAA2, CRH, and PCK1) were identified, which could play crucial roles in the thyroid to regulate ovarian function and then affect egg-laying performance between GP and DP. This study serves as a basis to explore the molecular mechanism of the thyroid affecting ovarian function and egg production in female ducks and may help to identify molecular markers that can be used for duck genetic selection.
Collapse
|
31
|
Yan X, Hu J, Qi J, Tang Q, Li J, Bai L, Tang B, Ouyang Q, Wu T, He H, Li L, Xu H, Wang J, Han X, Zeng X, Liu H. Research Note: Integrated transcriptomic and metabolomic analysis reveals potential candidate genes and regulatory pathways associated with egg weight in ducks. Poult Sci 2022; 102:102341. [PMID: 36481710 PMCID: PMC9731842 DOI: 10.1016/j.psj.2022.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
Abstract
Egg weight is an important indicator of egg phenotypic traits, which directly affects the economic benefits of the poultry industry. In the present research, laying ducks were classified into high egg weight (HEW) and light egg weight (LEW) groups. To reveal the underlying mechanism that may be responsible for the egg weight difference, the integrated analysis of transcriptomes and serum metabolomics was performed between the two groups. The results showed extremely significant differences (P < 0.01) in the total egg weight at 300 d, and average egg weight between the HEW and LEW groups. 733, 591, 82, and 74 differentially expressed genes (DEGs) were identified in the liver, magnum, F1, and F5 (hierarchical follicles) follicle membrane, respectively. The candidate genes were screened further from the perspective of forming an egg. In terms of egg yolk formation, the functional analysis revealed fatty acid metabolism-related pathways account for 36% of the liver's top pathways, including fatty acid biosynthesis, folate biosynthesis, fatty acid metabolism, and glycerol lipid metabolism pathways. FASN gene was identified as the key candidate gene by comprehensive analysis of gene expression and protein-protein interaction (PPI) network. In the follicle membrane, the DEGs were mainly enriched in protein processing in the endoplasmic reticulum, and MAPK signaling pathway, and HSPA2, HSPA8, BAG3 genes were identified as crucial candidate genes. In terms of egg white formation, the functional analysis revealed protein metabolism-related pathways account for 40% of the magnum's top pathways, which includes protein processing in the endoplasmic reticulum pathway. HSP90AA1 and HSPA8 genes were identified as key candidate genes. In addition, the integrated transcriptomic and metabolomic analysis showed that arginine and proline metabolism pathways could contribute to differences in egg weight. Thus, we speculated that the potential candidate genes, regulatory pathways, and metabolic biomarkers mentioned above might be responsible for the egg weight difference. These findings might provide a theoretical basis for improving the egg weight of ducks.
Collapse
Affiliation(s)
- Xiping Yan
- A Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Qian Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Junpeng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Bincheng Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Tianhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Jiweng Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Xingfa Han
- A Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Xianyin Zeng
- A Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
32
|
Gul H, Habib G, Khan IM, Rahman SU, Khan NM, Wang H, Khan NU, Liu Y. Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Front Vet Sci 2022; 9:1032983. [PMID: 36439341 PMCID: PMC9691405 DOI: 10.3389/fvets.2022.1032983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 06/13/2024] Open
Abstract
The genome contributes to the uniqueness of an individual breed, and enables distinctive characteristics to be passed from one generation to the next. The allelic heterogeneity of a certain breed results in a different response to a pathogen with different genomic expression. Disease resistance in chicken is a polygenic trait that involves different genes that confer resistance against pathogens. Such resistance also involves major histocompatibility (MHC) molecules, immunoglobulins, cytokines, interleukins, T and B cells, and CD4+ and CD8+ T lymphocytes, which are involved in host protection. The MHC is associated with antigen presentation, antibody production, and cytokine stimulation, which highlight its role in disease resistance. The natural resistance-associated macrophage protein 1 (Nramp-1), interferon (IFN), myxovirus-resistance gene, myeloid differentiation primary response 88 (MyD88), receptor-interacting serine/threonine kinase 2 (RIP2), and heterophile cells are involved in disease resistance and susceptibility of chicken. Studies related to disease resistance genetics, epigenetics, and quantitative trait loci would enable the identification of resistance markers and the development of disease resistance breeds. Microbial infections are responsible for significant outbreaks and have blighted the poultry industry. Breeding disease-resistant chicken strains may be helpful in tackling pathogens and increasing the current understanding on host genetics in the fight against communicable diseases. Advanced technologies, such as the CRISPR/Cas9 system, whole genome sequencing, RNA sequencing, and high-density single nucleotide polymorphism (SNP) genotyping, aid the development of resistant breeds, which would significantly decrease the use of antibiotics and vaccination in poultry. In this review, we aimed to reveal the recent genetic basis of infection and genomic modification that increase resistance against different pathogens in chickens.
Collapse
Affiliation(s)
- Haji Gul
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
33
|
Xiang X, Huang X, Wang J, Zhang H, Zhou W, Xu C, Huang Y, Tan Y, Yin Z. Transcriptome Analysis of the Ovaries of Taihe Black-Bone Silky Fowls at Different Egg-Laying Stages. Genes (Basel) 2022; 13:2066. [PMID: 36360303 PMCID: PMC9691135 DOI: 10.3390/genes13112066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 01/01/2025] Open
Abstract
The poor egg-laying performance and short peak egg-laying period restrict the economic benefits of enterprises relating to the Taihe black-bone silky fowl. Ovaries are the main organ for egg production in poultry. Unlike that of mammals, the spawning mechanism of poultry has rarely been reported. As a prominent local breed in China, the reproductive performance of Taihe black-bone silky fowls is in urgent need of development and exploitation. To further explore the egg-laying regulation mechanism in the different periods of Taihe black-bone silky fowls, the ovarian tissues from 12 chickens were randomly selected for transcriptome analysis, and 4 chickens in each of the three periods (i.e., the pre-laying period (102 days old, Pre), peak laying period (203 days old, Peak), and late laying period (394 days old, Late)). A total of 12 gene libraries were constructed, and a total of 9897 differential expression genes (DEGs) were identified from three comparisons; the late vs. peak stage had 509 DEGs, the pre vs. late stage had 5467 DEGs, and the pre vs. peak stage had 3921 DEGs (pre-stage: pre-egg-laying period (102 days old), peak-stage: peak egg-laying period (203 days old), and late-stage: late egg-laying period (394 days old)). In each of the two comparisons, 174, 84, and 2752 differentially co-expressed genes were obtained, respectively, and 43 differentially co-expressed genes were obtained in the three comparisons. Through the analysis of the differential genes, we identified some important genes and pathways that would affect reproductive performance and ovarian development. The differential genes were LPAR3, AvBD1, SMOC1, IGFBP1, ADCY8, GDF9, PTK2B, PGR, and CD44, and the important signaling pathways included proteolysis, extracellular matrices, vascular smooth muscle contraction, the NOD-like receptor signaling pathway and the phagosome. Through the analysis of the FPKM (Fragments Per Kilobase of exon model per Million mapped fragments) values of the genes, we screened three peak egg-laying period-specific expressed genes: IHH, INHA, and CYP19A1. The twelve genes and five signaling pathways mentioned above have rarely been reported in poultry ovary studies, and our study provides a scientific basis for the improvement of the reproductive performance in Taihe black-bone silky fowls.
Collapse
Affiliation(s)
- Xin Xiang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Xuan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | | | - Haiyang Zhang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhou
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Xu
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Yunyan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Yuting Tan
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Zhaozheng Yin
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Bello SF, Xu H, Li K, Guo L, Zhang S, Ahmed RO, Bekele EJ, Zheng M, Xian M, Abdalla BA, Adeola AC, Adetula AA, Lawal RA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Research Note: Association of Single Nucleotide Polymorphism of AKT3 with Egg Production Traits in White Muscovy Ducks (Cairina moschata). Poult Sci 2022; 101:102211. [PMID: 36272235 PMCID: PMC9589204 DOI: 10.1016/j.psj.2022.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Prior studies on transcriptomes of hypothalamus and ovary revealed that AKT3 is one of the candidate genes that might affect egg production in White Muscovy ducks. The role of AKT3 in the uterus during reproductive processes cannot be overemphasized. However, functional role of this gene in the tissues and on egg production traits of Muscovy ducks remains unknown. To identify the relationship between AKT3 and egg production traits in ducks, relative expression profile was first examined prior to identifying the variants within AKT3 that may underscore egg production traits [age at first egg (AFE), number of eggs at 300 d (N300D), and number of eggs at 59 wk (N59W)] in 549 ducks. The mRNA expression of AKT3 gene in high producing (HP) ducks was significantly higher than low producing (LP) ducks in the ovary, oviduct, and hypothalamus (P < 0.05 or 0.001). Three variants in AKT3 (C-3631A, C-3766T, and C-3953T) and high linkage block between C-3766T and C-3953T which are significantly (P < 0.05) associated with N300D and N59W were discovered. This study elucidates novel knowledge on the molecular mechanism of AKT3 that might be regulating egg production traits in Muscovy ducks.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ridwan Olawale Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Endashaw Jebessa Bekele
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ming Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Mingjian Xian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Bahareldin Ali Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Adeniyi Charles Adeola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
| | - Adeyinka Abiola Adetula
- Reproductive Biotechnology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University Munich, 85354 Freising, Germany
| | | | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China.
| |
Collapse
|
35
|
Transcriptomics and Metabolomics Analysis of the Ovaries of High and Low Egg Production Chickens. Animals (Basel) 2022; 12:ani12162010. [PMID: 36009602 PMCID: PMC9404446 DOI: 10.3390/ani12162010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The ovarian tissues of different breeds of hens during egg production were investigated through transcriptomics and metabolomics to provide a more comprehensive understanding of the molecular mechanisms of the ovary during egg production. Four genes involved in egg production were predicted by the transcriptome, including P2RX1, INHBB, VIPR2, and FABP3, and several close metabolites associated with reproduction were identified in the metabolome, including 17α-hydroxyprogesterone, iloprost, spermidine and adenosine. Correlation analysis of specific differential genes and differential metabolites identified important gene-metabolite pairs VIPR2–Spermidine and P2RX1–Spermidine in the reproductive process. Abstract Egg production is a pivotal indicator for evaluating the fertility of poultry, and the ovary is an essential organ for egg production and plays an indispensable role in poultry production and reproduction. In order to investigate different aspects of egg production mechanisms in different poultry, in this study we performed a metabolomic analysis of the transcriptomic combination of the ovaries of two chicken breeds, the high-production Ninghai indigenous chickens and the low-production Wuliangshan black-boned chickens, to analyze the biosynthesis and potential key genes and metabolic pathways in the ovaries during egg production. We predicted four genes in the transcriptomic that are associated with egg production, namely P2RX1, INHBB, VIPR2, and FABP3, and identified three important pathways during egg production, “Calcium signaling pathway”, “Neuroactive ligand–receptor interaction” and “Cytokine–cytokine receptor interaction”, respectively. In the metabolomic 149 significantly differential metabolites were identified, 99 in the negative model and 50 in the positive model, of which 17α-hydroxyprogesterone, iloprost, spermidine, and adenosine are important metabolites involved in reproduction. By integrating transcriptomics and metabolomics, the correlation between specific differential genes and differential metabolites identified important gene-metabolite pairs “VIPR2-Spermidine” and “P2RX1-Spermidine” in egg production. In conclusion, these data provide a better understanding of the molecular differences between the ovaries of low- and high-production hens and provide a theoretical basis for further studies on the mechanics of poultry egg production.
Collapse
|
36
|
Bello SF, Adeola AC, Nie Q. The study of candidate genes in the improvement of egg production in ducks – a review. Poult Sci 2022; 101:101850. [PMID: 35544958 PMCID: PMC9108513 DOI: 10.1016/j.psj.2022.101850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/01/2022] Open
Abstract
Duck is the second-largest poultry species aside from chicken. The rate of egg production is a major determinant of the economic income of poultry farmers. Among the reproductive organs, the ovary is a major part of the female reproductive system which is highly important for egg production. Based on the importance of this organ, several studies have been carried out to identify candidate genes at the transcriptome level, and also the expression level of these genes at different tissues or egg-laying conditions, and single nucleotide polymorphism (SNPs) of genes associated with egg production in duck. In this review, expression profile and association study analyses at SNPs level of different candidate genes with egg production traits of duck were highlighted. Furthermore, different studies on transcriptome analysis, Quantitative Trait Loci (QTL) mapping, and Genome Wide Association Study (GWAS) approach used to identify potential candidate genes for egg production in ducks were reported. This review would widen our knowledge on molecular markers that are associated or have a positive correlation to improving egg production in ducks, for the increasing world populace.
Collapse
|
37
|
Bhavana K, Foote DJ, Srikanth K, Balakrishnan CN, Prabhu VR, Sankaralingam S, Singha HS, Gopalakrishnan A, Nagarajan M. Comparative transcriptome analysis of Indian domestic duck reveals candidate genes associated with egg production. Sci Rep 2022; 12:10943. [PMID: 35768515 PMCID: PMC9243076 DOI: 10.1038/s41598-022-15099-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Egg production is an important economic trait and a key indicator of reproductive performance in ducks. Egg production is regulated by several factors including genes. However the genes involved in egg production in duck remain unclear. In this study, we compared the ovarian transcriptome of high egg laying (HEL) and low egg laying (LEL) ducks using RNA-Seq to identify the genes involved in egg production. The HEL ducks laid on average 433 eggs while the LEL ducks laid 221 eggs over 93 weeks. A total of 489 genes were found to be significantly differentially expressed out of which 310 and 179 genes were up and downregulated, respectively, in the HEL group. Thirty-eight differentially expressed genes (DEGs), including LHX9, GRIA1, DBH, SYCP2L, HSD17B2, PAR6, CAPRIN2, STC2, and RAB27B were found to be potentially related to egg production and folliculogenesis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that DEGs were enriched for functions related to glutamate receptor activity, serine-type endopeptidase activity, immune function, progesterone mediated oocyte maturation and MAPK signaling. Protein-protein interaction network analysis (PPI) showed strong interaction between 32 DEGs in two distinct clusters. Together, these findings suggest a mix of genetic and immunological factors affect egg production, and highlights candidate genes and pathways, that provides an understanding of the molecular mechanisms regulating egg production in ducks and in birds more broadly.
Collapse
Affiliation(s)
- Karippadakam Bhavana
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Dustin J Foote
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Krishnamoorthy Srikanth
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Vandana R Prabhu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.,ICAR-Central Marine Fisheries Research Institute, Ernakulam North PO, Kochi, Kerala, 682 018, India
| | - Shanmugam Sankaralingam
- Department of Poultry Science, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, 680 651, India
| | - Hijam Surachandra Singha
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | | | - Muniyandi Nagarajan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
38
|
Yan X, Liu H, Hu J, Han X, Qi J, Ouyang Q, Hu B, He H, Li L, Wang J, Zeng X. Transcriptomic analyses of the HPG axis-related tissues reveals potential candidate genes and regulatory pathways associated with egg production in ducks. BMC Genomics 2022; 23:281. [PMID: 35395713 PMCID: PMC8991983 DOI: 10.1186/s12864-022-08483-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Egg production is one of the most important economic traits in the poultry industry. The hypothalamic-pituitary-gonadal (HPG) axis plays an essential role in regulating reproductive activities. However, the key genes and regulatory pathways within the HPG axis dominating egg production performance remain largely unknown in ducks. RESULTS In this study, we compared the transcriptomic profiles of the HPG-related tissues between ducks with high egg production (HEP) and low egg production (LEP) to reveal candidate genes and regulatory pathways dominating egg production. We identified 543, 759, 670, and 181 differentially expressed genes (DEGs) in the hypothalamus, pituitary, ovary stroma, and F5 follicle membrane, respectively. Gene Ontology (GO) analysis revealed that DEGs from four HPG axis-related tissues were enriched in the "cellular component" category. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the neuroactive ligand-receptor interaction pathway was significantly enriched based on DEGs commonly identified in all four HPG axis-related tissues. Gene expression profiles and Protein-Protein Interaction (PPI) network were performed to show the regulatory relationships of the DEGs identified. Five DEGs encoding secreted proteins in the hypothalamus and pituitary have interaction with DEGs encoding targeted proteins in the ovary stroma and F5 follicle membrane, implying that they were these DEGs might play similar roles in the regulation of egg production. CONCLUSIONS Our results revealed that neuroactive ligand-receptor interaction pathway and five key genes(VEGFC, SPARC, BMP2, THBS1, and ADAMTS15) were identified as the key signaling pathways and candidate genes within the HPG axis responsible for different egg production performance between HEP and LEP. This is the first study comparing the transcriptomic profiles of all HPG axis-related tissues in HEP and LEP using RNA-seq in ducks to the best of our knowledge. These data are helpful to enrich our understanding of the classical HPG axis regulating the egg production performance and identify candidate genes that can be used for genetic selection in ducks.
Collapse
Affiliation(s)
- Xiping Yan
- A Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xingfa Han
- A Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xianyin Zeng
- A Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
39
|
Ovarian Transcriptomic Analysis of Ninghai Indigenous Chickens at Different Egg-Laying Periods. Genes (Basel) 2022; 13:genes13040595. [PMID: 35456401 PMCID: PMC9027236 DOI: 10.3390/genes13040595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Egg production is an essential indicator of poultry fertility. The ovary is a crucial organ involved in egg production; however, little is known about the key genes and signaling pathways involved in the whole egg-laying cycle of hens. In order to explore the mechanism of egg production at different stages of the egg-laying process, ovarian tissues from four chickens were randomly selected for transcriptome analysis at each of the three ages (145 d, 204 d, and 300 d in the early, peak, and late stages of egg laying). A total of 12 gene libraries were constructed, and a total of 8433 differential genes were identified from NH145d vs. NH204d, NH145d vs. NH300d and NH300d vs. NH204d (Ninghai 145-day-old, Ninghai 204-day-old, and Ninghai 300-day-old), with 1176, 1653 and 1868 up-regulated genes, and 621, 1955 and 1160 down-regulated genes, respectively. In each of the two comparison groups, 73, 1004, and 1030 differentially expressed genes were found to be co-expressed. We analyzed the differentially expressed genes and predicted nine genes involved in egg production regulation, including LRP8, BMP6, ZP4, COL4A1, VCAN, INHBA, LOX, PTX3, and IHH, as well as several essential egg production pathways, such as regulation adhesion molecules (CAMs), calcium signaling pathways, neuroactive ligand–receptor interaction, and cytokine–cytokine receptor interaction. Transcriptional analysis of the chicken ovary during different phases of egg-lay will provide a useful molecular basis for study of the development of the egg-laying ovary.
Collapse
|
40
|
Wang Y, Yuan J, Sun Y, Li Y, Wang P, Shi L, Ni A, Zong Y, Zhao J, Bian S, Ma H, Chen J. Genetic Basis of Sexual Maturation Heterosis: Insights From Ovary lncRNA and mRNA Repertoire in Chicken. Front Endocrinol (Lausanne) 2022; 13:951534. [PMID: 35966096 PMCID: PMC9363637 DOI: 10.3389/fendo.2022.951534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Sexual maturation is fundamental to the reproduction and production performance, heterosis of which has been widely used in animal crossbreeding. However, the underlying mechanism have long remained elusive, despite its profound biological and agricultural significance. In the current study, the reciprocal crossing between White Leghorns and Beijing You chickens were performed to measure the sexual maturation heterosis, and the ovary lncRNAs and mRNAs of purebreds and crossbreeds were profiled to illustrate molecular mechanism of heterosis. Heterosis larger than 20% was found for pubic space and oviduct length, whereas age at first egg showed negative heterosis in both crossbreeds. We identified 1170 known lncRNAs and 1994 putative lncRNAs in chicken ovary using a stringent pipeline. Gene expression pattern showed that nonadditivity was predominant, and the proportion of nonadditive lncRNAs and genes was similar between two crossbreeds, ranging from 44.24% to 49.15%. A total of 200 lncRNAs and 682 genes were shared by two crossbreeds, respectively. GO and KEGG analysis showed that the common genes were significantly enriched in the cell cycle, animal organ development, gonad development, ECM-receptor interaction, calcium signaling pathway and GnRH signaling pathway. Weighted gene co-expression network analysis (WGCNA) identified that 7 out of 20 co-expressed lncRNA-mRNA modules significantly correlated with oviduct length and pubic space. Interestingly, genes harbored in seven modules were also enriched in the similar biological process and pathways, in which nonadditive lncRNAs, such as MSTRG.17017.1 and MSTRG.6475.20, were strongly associated with nonadditive genes, such as CACNA1C and TGFB1 to affect gonad development and GnRH signaling pathway, respectively. Moreover, the results of real-time quantitative PCR (RT-qPCR) correlated well with the transcriptome data. Integrated with positive heterosis of serum GnRH and melatonin content detected in crossbreeds, we speculated that nonadditive genes involved in the GnRH signaling pathway elevated the gonad development, leading to the sexual maturation heterosis. We characterized a systematic landscape of ovary lncRNAs and mRNAs related to sexual maturation heterosis in chicken. The quantitative exploration of hybrid transcriptome changes lays foundation for genetic improvement of sexual maturation traits and provides insights into endocrine control of sexual maturation.
Collapse
|