1
|
Sarwar A, Aslam B, Mahmood S, Muzammil S, Siddique AB, Sarwar F, Khurshid M, Rasool MH, Sasanya J, Aljasir SF. Distribution of multidrug-resistant Proteus mirabilis in poultry, livestock, fish, and the related environment: One Health heed. Vet World 2025; 18:446-454. [PMID: 40182804 PMCID: PMC11963587 DOI: 10.14202/vetworld.2025.446-454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/22/2025] [Indexed: 04/05/2025] Open
Abstract
Background and Aim The emergence of multidrug-resistant (MDR) Proteus mirabilis in food-producing animals and their associated environments is a growing public health concern. The indiscriminate use of antimicrobials in animal husbandry exacerbates resistance development, posing significant threats to food safety and sustainability. This study investigates the distribution, antibiotic resistance patterns, and virulence-associated genes (VAGs) of P. mirabilis isolated from poultry, livestock, fish, and their environments in Pakistan under a One Health perspective. Materials and Methods A total of 225 samples were collected from poultry (n = 100), livestock (n = 75), and aquatic sources (n = 50) from March 2023 to September 2024. Standard microbiological methods were employed for the isolation and identification of P. mirabilis. Polymerase chain reaction (PCR)-based detection of antibiotic resistance genes and VAGs was performed using specific primers. Antibiotic susceptibility was assessed through the disk diffusion method following Clinical and Laboratory Standards Institute 2022 guidelines. Statistical analyses, including analysis of variance and correlation models, were applied to assess the relationships between variables. Results P. mirabilis was detected in 28.44% (64/225) of the total samples, with the highest occurrence observed in poultry (38%), followed by livestock (22.67%) and aquatic sources (18%). Resistance to ampicillin (100%), chloramphenicol (82%), cefepime (75%), and ciprofloxacin (75%) was widespread. PCR analysis revealed a high occurrence of extended-spectrum beta-lactamase-producing P. mirabilis carrying bla CTX-M (49%), bla OXA (54%), and bla TEM (25.67%) genes. In addition, VAGs such as zapA (39.53%), ucaA (34.88%), and hpmA (32.55%) were frequently identified. The presence of MDR P. mirabilis in fish and related environments (18%) is alarming, highlighting potential zoonotic and foodborne transmission risks. Conclusion The study underscores the widespread distribution of MDR P. mirabilis in animal-based food sources, raising significant concerns regarding food safety and antimicrobial resistance. The findings reinforce the need for stringent monitoring and regulatory policies to mitigate MDR bacterial dissemination across the food supply chain. Future research should employ metagenomic approaches for comprehensive surveillance and risk assessment.
Collapse
Affiliation(s)
- Ayesha Sarwar
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Sara Mahmood
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Fatima Sarwar
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | | | | | - Sulaiman F. Aljasir
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Xu Y, Ji X, Chen X, Gui G, He T, Xiao Y, Lv L, Lyu W. Characterisation of Proteus mirabilis isolates from the poultry production chain in Zhejiang Province, China: antimicrobial resistance, virulence factors and genotypic profiling. Br Poult Sci 2025:1-10. [PMID: 39853207 DOI: 10.1080/00071668.2024.2436995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/13/2024] [Indexed: 01/26/2025]
Abstract
1. This study investigated antimicrobial resistance, virulence factors and genotypic profiling among Proteus mirabilis isolated from three sources (poultry farms, slaughterhouses and retail markets) in the poultry production chain in Zhejiang Province, China, to assess its potential risk to public health.2. A total of 112 P. mirabilis strains were isolated from 409 samples, including 35 from poultry farms, 35 from slaughterhouses and 42 from retail markets. Antimicrobial susceptibility was tested using 18 antimicrobials in 9 categories, in which 110 (98.2%) strains were considered multidrug-resistant (MDR). These strains carried numerous antimicrobial resistance genes, with the sulphonamide resistance gene (sul1) having the highest rate (100%) and the polymyxin resistance gene (mcr-1) the lowest (3.6%).3. These isolates were validated to carry virulence genes pmfA, mrpA, atfC, rsbA, atfA, ureC and ucaA with the high prevalence of 96.4, 92.9, 92.0, 85.7, 85.7, 57.1 and 46.4%, respectively. Genotyping results using the ERIC-PCR indicated that the genetic similarity of all the isolates was 68.6% to 100% which fell into 4 clusters.4. The P. mirabilis isolates from the slaughterhouses exhibited higher levels of antibiotic resistance and a more pronounced MDR phenomenon than those from poultry farms and retail markets. The proportion of isolates carrying the most commonly detected resistant and virulence genes was higher in samples from poultry farms and slaughterhouses as opposed to retail markets. Importantly, there was genetic similarity and heterogeneity among P. mirabilis isolates from the three sources and genotypic diversity was the highest among isolates from retail markets, followed by slaughterhouses and poultry farms.
Collapse
Affiliation(s)
- Y Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - X Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - X Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - G Gui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - T He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Y Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - L Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - W Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
3
|
de Oliva BHD, do Nascimento AB, de Oliveira JP, Guidone GHM, Schoeps BL, Silva LC, Barbosa MGL, Montini VH, de Oliveira Junior AG, Rocha SPD. Genomic insights into a Proteus mirabilis strain inducing avian cellulitis. Braz J Microbiol 2024; 55:4157-4166. [PMID: 39235714 PMCID: PMC11711737 DOI: 10.1007/s42770-024-01508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Proteus mirabilis, a microorganism distributed in soil, water, and animals, is clinically known for causing urinary tract infections in humans. However, recent studies have linked it to skin infections in broiler chickens, termed avian cellulitis, which poses a threat to animal welfare. While Avian Pathogenic Escherichia coli (APEC) is the primary cause of avian cellulitis, few cases of P. mirabilis involvement are reported, raising questions about the factors facilitating such occurrences. This study employed a pan-genomic approach to investigate whether unique genes exist in P. mirabilis strains causing avian cellulitis. The genome of LBUEL-A33, a P. mirabilis strain known to cause this infection, was assembled, and compared with other P. mirabilis strains isolated from poultry and other sources. Additionally, in silico serogroup analysis was conducted. Results revealed numerous genes unique to the LBUEL-A33 strain. No function in cellulitis was identified for these genes, and in silico investigation of the virulence potential of LBUEL-A33's exclusive proteins proved inconclusive. These findings support that multiple factors are necessary for P. mirabilis to cause avian cellulitis. Furthermore, this species likely employs its own unique arsenal of virulence factors, as many identified mechanisms are analogous to those of E. coli. While antigenic gene clusters responsible for serogroups were identified, no clear trend was observed, and the gene cluster of LBUEL-A33 did not show homology with any sequenced Proteus serogroups. These results reinforce the understanding that this disease is multifactorial, necessitating further research to unravel the mechanisms and underpin the development of control and prevention strategies.
Collapse
Affiliation(s)
- Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Arthur Bossi do Nascimento
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - João Paulo de Oliveira
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Beatriz Lernic Schoeps
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Mario Gabriel Lopes Barbosa
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Victor Hugo Montini
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | | | - Sérgio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil.
| |
Collapse
|
4
|
El-Saeed BA, Elshebrawy HA, Zakaria AI, Abdelkhalek A, Imre K, Morar A, Herman V, Sallam KI. Multidrug-Resistant Proteus mirabilis and Other Gram-Negative Species Isolated from Native Egyptian Chicken Carcasses. Trop Med Infect Dis 2024; 9:217. [PMID: 39330906 PMCID: PMC11436119 DOI: 10.3390/tropicalmed9090217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Poultry carcasses may be reservoirs for the zoonotic transmission of antimicrobial-resistant bacteria to humans and pose a major public health hazard. During the isolation of Salmonella from poultry and other foods, many of the presumptive typical Salmonella colonies on xylose lysine deoxycholate (XLD) agar were found to lack the invA gene, which is the specific target gene for Salmonella spp. Therefore, the current study aimed to estimate the prevalence and antimicrobial resistance profiles of extensively drug-resistant invA-negative non-Salmonella isolates recovered from native Egyptian chicken carcasses as presumptive Salmonella colonies on XLD agar. The non-Salmonella isolates were detected in 84% (126/150) of the examined native Egyptian chicken carcasses and classified into five genera, with prevalence rates of 64% (96/150), 14% (21/150), 6.7% (10/150), 3.3% (5/150), and 1.3% (2/150) for Proteus, Citrobacter, Shigella, Pseudomonas, and Edwardsiella, respectively. One hundred and ninety-five invA-negative, non-verified presumptive Salmonella isolates were recovered and classified at the species level into Proteus mirabilis (132/195; 67.7%), Proteus vulgaris (11/195; 5.6%), Citrobacter freundii (26/195; 13.3%), Shigella flexneri (8/195; 4.1%), Shigella sonnei (6/195; 3.1%), Shigella dysenteriae (3/195; 1.5%), Pseudomonas fluorescens (6/195; 3.1%), and Edwardsiella tarda (3/195; 1.5%). All (195/195; 100%) of these isolates showed resistance against cefaclor and fosfomycin. Additionally, these isolates showed high resistance rates of 98%, 92.8%, 89.7%, 89.2%, 89.2%, 86.7%, 80%, 78.5%, 74.4%, and 73.9% against cephalothin, azithromycin, vancomycin, nalidixic acid, tetracycline, sulfamethoxazole/trimethoprim, cefepime, gentamicin, cefotaxime, and ciprofloxacin, respectively. Interestingly, all (195/195; 100%) of the identified isolates were resistant to at least five antibiotics and exhibited an average MAR (multiple antibiotic resistance) index of 0.783. Furthermore, 73.9% of the examined isolates were classified as extensively drug-resistant, with an MAR index equal to 0.830. The high prevalence of extensively drug-resistant foodborne Proteus, Citrobacter, Shigella, Pseudomonas, and Edwardsiella isolated from native chicken carcasses poses a great hazard to public health and necessitates more monitoring and concern about the overuse and misuse of antibiotics in humans and animals. This study also recommends the strict implementation of GHP (good hygienic practices) and GMP (good manufacturing practices) in the chicken meat supply chain to protect consumer health.
Collapse
Affiliation(s)
| | - Hend Ali Elshebrawy
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Amira Ibrahim Zakaria
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| | - Khalid Ibrahim Sallam
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Kong N, Hu Y, Lan C, Bi S. A novel PCR-based genotyping method for Proteus mirabilis - Intergenic region polymorphism analysis. J Microbiol Methods 2024; 224:107008. [PMID: 39103095 DOI: 10.1016/j.mimet.2024.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Proteus mirabilis is a predominant species in cases of food poisoning associated with meat products and is also an opportunistic pathogen causing numerous infections in humans. This study aimed to differentiate P. mirabilis isolates using intergenic region polymorphism analysis (IRPA). The IRPA typing scheme was developed to amplify polymorphic fragments in intergenic regions (IGRs). The presence, absence, or size change of amplified products were identified and utilized as genetic markers for rapid differentiation of strains. A total of 75 P. mirabilis isolates were isolated from 63 fresh poultry and pork samples were subtyped using the IRPA and ERIC-PCR methods, and their antibiotic resistance profiles were tested. The majority of P. mirabilis isolates showed resistance to tetracycline (85.3%), doxycycline (93.3%), chloramphenicol (82.7%), streptomycin (92.0%), spectinomycin (80.0%), trimethoprim (97.3%); trimethoprim-sulfalleth (82.7%), and erythromycin (100.0%). In contrast, resistance rates to ceftriaxon, cefoxitin, cefepime, and cefotaxim were lower at only 17.3%, 5.3%, 6.7%, and 13.3%, respectively, among P. mirabilis isolates. Eleven loci were selected for analysis of the genetic diversity of 75 P. mirabilis isolates. A combination of 4 loci was determined as the optimal combination. The results compared to those obtained using ERIC-PCR for the same isolates. The Simpson's index of diversity was 0.999 for IRPA and 0.923 for ERIC-PCR, indicating that IRPA has a higher discriminatory power than ERIC-PCR. The concordance between IRPA and ERIC-PCR methods was low, primarily because IRPA classified isolates from the same ERIC cluster into separate clusters due to its high resolution. The IRPA method presented in this study offers a rapid, simple, reproducible, and economical approach for genotyping P. mirabilis.
Collapse
Affiliation(s)
- Nianqing Kong
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China; Nanfang Hospital Baiyun Branch, Southern Medical University, Guangzhou, Guangdong 510600, China
| | - Yilin Hu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Chenglu Lan
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Shuilian Bi
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China.
| |
Collapse
|
6
|
Yan G, Wang S, Cui Y, Xue K, Liu Y, Liu J. Bacterial Diversity and Antimicrobial Resistance of Microorganisms Isolated from Teat Cup Liners in Dairy Farms in Shandong Province, China. Animals (Basel) 2024; 14:2167. [PMID: 39123692 PMCID: PMC11311105 DOI: 10.3390/ani14152167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Global milk consumption exceeds 800 million tons a year and is still growing. Milk quality and its products are critical to human health. A teat cup makes direct contact with the cow's teats during milking and its cleanliness is very important for the quality of raw milk. In this study, the microorganism from post-milking teat cup liners were collected from six dairy farms in Shandong Province of China, the bacterial species were identified using microbial mass spectrometry, the minimum inhibitory concentrations of the isolated strains against ten antimicrobial agents were determined using the broth microdilution method, and the antimicrobial resistance genes were detected by PCR. The results indicated that the most frequently isolated bacteria in this study were Bacillus licheniformis (39/276, 14.13%), followed by Bacillus pumilus (20/276, 7.25%), Bacillus cereus (17/276, 6.16%), and Bacillus subtili (16/276, 5.80%). The isolates exhibited the highest average resistance to lincomycin (87.37%), followed by sulfadiazine (61.05%) and streptomycin (42.63%); the highest detection rate of resistance genes was Sul1 (55.43%), followed by ant(4') (51.09%), tet(M) (25.36%), blaKPC (3.62%) and qnrS (3.62%). These findings imply the necessity for enhanced measures in disinfecting cow udders and milking equipment, highlighting the persistently challenging issue of antimicrobial resistance in Shandong Province.
Collapse
Affiliation(s)
- Guangwei Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (G.Y.); (S.W.); (Y.C.); (K.X.)
| | - Shengnan Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (G.Y.); (S.W.); (Y.C.); (K.X.)
- The ShangHai Hanvet Bio-Pharm Co., Ltd., Shanghai 200135, China
| | - Yuehui Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (G.Y.); (S.W.); (Y.C.); (K.X.)
| | - Kun Xue
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (G.Y.); (S.W.); (Y.C.); (K.X.)
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (G.Y.); (S.W.); (Y.C.); (K.X.)
| |
Collapse
|
7
|
Dong Z, Wu R, Liu L, Ai S, Yang J, Li Q, Fu K, Zhou Y, Fu H, Zhou Z, Liu H, Zhong Z, Qiu X, Peng G. Phage P2-71 against multi-drug resistant Proteus mirabilis: isolation, characterization, and non-antibiotic antimicrobial potential. Front Cell Infect Microbiol 2024; 14:1347173. [PMID: 38500503 PMCID: PMC10945010 DOI: 10.3389/fcimb.2024.1347173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Proteus mirabilis, a prevalent urinary tract pathogen and formidable biofilm producer, especially in Catheter-Associated Urinary Tract Infection, has seen a worrying rise in multidrug-resistant (MDR) strains. This upsurge calls for innovative approaches in infection control, beyond traditional antibiotics. Our research introduces bacteriophage (phage) therapy as a novel non-antibiotic strategy to combat these drug-resistant infections. We isolated P2-71, a lytic phage derived from canine feces, demonstrating potent activity against MDR P. mirabilis strains. P2-71 showcases a notably brief 10-minute latent period and a significant burst size of 228 particles per infected bacterium, ensuring rapid bacterial clearance. The phage maintains stability over a broad temperature range of 30-50°C and within a pH spectrum of 4-11, highlighting its resilience in various environmental conditions. Our host range assessment solidifies its potential against diverse MDR P. mirabilis strains. Through killing curve analysis, P2-71's effectiveness was validated at various MOI levels against P. mirabilis 37, highlighting its versatility. We extended our research to examine P2-71's stability and bactericidal kinetics in artificial urine, affirming its potential for clinical application. A detailed genomic analysis reveals P2-71's complex genetic makeup, including genes essential for morphogenesis, lysis, and DNA modification, which are crucial for its therapeutic action. This study not only furthers the understanding of phage therapy as a promising non-antibiotic antimicrobial but also underscores its critical role in combating emerging MDR infections in both veterinary and public health contexts.
Collapse
Affiliation(s)
- Zhiyou Dong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ruihu Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijuan Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengquan Ai
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Jinpeng Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianlan Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keyi Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunian Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Ramatla T, Ramaili T, Lekota K, Mileng K, Ndou R, Mphuthi M, Khasapane N, Syakalima M, Thekisoe O. Antibiotic resistance and virulence profiles of Proteus mirabilis isolated from broiler chickens at abattoir in South Africa. Vet Med Sci 2024; 10:e1371. [PMID: 38357843 PMCID: PMC10867704 DOI: 10.1002/vms3.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Proteus mirabilis has been identified as an important zoonotic pathogen, causing several illnesses such as diarrhoea, keratitis and urinary tract infections. OBJECTIVE This study assessed the prevalence of P. mirabilis in broiler chickens, its antibiotic resistance (AR) patterns, ESBL-producing P. mirabilis and the presence of virulence genes. METHODS A total of 26 isolates were confirmed as P. mirabilis from 480 pooled broiler chicken faecal samples by polymerase chain reaction (PCR). The disk diffusion method was used to evaluate the antibacterial susceptibility test, while nine virulence genes and 26 AR genes were also screened by PCR. RESULTS All 26 P. mirabilis isolates harboured the ireA (siderophore receptors), ptA, and zapA (proteases), ucaA, pmfA, atfA, and mrpA (fimbriae), hlyA and hpmA (haemolysins) virulence genes. The P. mirabilis isolates were resistant to ciprofloxacin (62%) and levofloxacin (54%), while 8 (30.7%) of the isolates were classified as multidrug resistant (MDR). PCR analysis identified the blaCTX-M gene (62%), blaTEM (58%) and blaCTX-M-2 (38%). Further screening for AMR genes identified mcr-1, cat1, cat2, qnrA, qnrD and mecA, 12%, 19%, 12%, 54%, 27% and 8%, respectively for P. mirabilis isolates. The prevalence of the integron integrase intI1 and intI2 genes was 43% and 4%, respectively. CONCLUSIONS The rise of ciprofloxacin and levofloxacin resistance, as well as MDR strains, is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Furthermore, because ESBL-producing P. mirabilis has the potential to spread to humans, the presence of blaCTX -M -producing P. mirabilis in broilers should be kept under control. This is the first study undertaken to isolate P. mirabilis from chicken faecal samples and investigate its antibiotic resistance status as well as virulence profiles in South Africa.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
- Gastrointestinal Research UnitDepartment of SurgerySchool of Clinical MedicineUniversity of the Free StateBloemfonteinSouth Africa
| | - Taole Ramaili
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Kealeboga Mileng
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Rendani Ndou
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Malekoba Mphuthi
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Ntelekwane Khasapane
- Department of Life SciencesCentre for Applied Food Safety and BiotechnologyCentral University of TechnologyBloemfonteinSouth Africa
| | - Michelo Syakalima
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
- Department of Disease ControlSchool of Veterinary MedicineUniversity of ZambiaLusakaZambia
| | - Oriel Thekisoe
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
9
|
Li Z, Peng C, Chen L, Wang P, Wang F. Construction and Immunogenicity Evaluation of Recombinant Bacillus subtilis Expressing HA1 Protein of H9N2 Avian Influenza Virus. Curr Microbiol 2023; 81:25. [PMID: 38040977 DOI: 10.1007/s00284-023-03548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
The H9N2 subtype of the avian influenza virus (AIV) is one of the main subtypes of low pathogenic AIV, and it seriously affects the poultry breeding industry. Currently, vaccination is still one of China's main strategies for controlling H9N2 avian influenza. In this study, we selected MW548848.1 on the current popular main branch h9.4.2.5 as the reference strain, and we optimized the amino acid sequence of HA1 to make it suitable for expression in Bacillus subtilis. The B. subtilis expression vector showed good safety and stress resistance; therefore, this study constructed a recombinant B. subtilis expressing H9N2 HA1 protein and evaluated its immunogenicity in mice. The following results were obtained: the sIgA level of HA1 protein in small intestine fluid and the IgG level of PHT43-HA1/B. subtilis in serum were significantly improved (P < 0.01); PHT43-HA1/B. subtilis can cause a special immune response in mice; and cytokine detection interferon-gamma (IFN-γ) (P < 0.05) and Interleukin 2 (IL-2) (P < 0.01) expressions significantly increased. Additionally, the study found that PHT43-HA1/B. subtilis can alleviate the attack of H9N2 AIV in the spleen, lungs, and small intestine of mice. This study was the first to use an oral recombinant B. subtilis-HA1 vaccine candidate, and it provides theoretical data and technical reference for the creation of a new live vector vaccine against H9N2 AIV.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Chong Peng
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Lijun Chen
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Wang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Fangkun Wang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
10
|
Canan-Rochenbach G, Barreiros MAB, Lima AOS, Conti-Lampert AD, Ariente-Neto R, Pimentel-Almeida W, Laçoli R, Corrêa R, Radetski CM, Cotelle S. Are hospital wastewater treatment plants a source of new resistant bacterial strains? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108635-108648. [PMID: 37752395 DOI: 10.1007/s11356-023-30007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
To understand which type of hospital waste may contain the highest amount of antibiotic resistant microorganisms that could be released into the environment, the bacterial strains entering and leaving a hospital wastewater treatment plant (HWTP) were identified and tested for their antibiotic susceptibility. To achieve this goal, samples were collected from three separate sites, inlet and outlet wastewater positions, and sludge generated in a septic tank. After microbiological characterization according to APHA, AWWA, and WEF protocols, the relative susceptibility of the bacterial strains to various antibiotic agents was assessed according to the Clinical and Laboratory Standards Institute guidelines, to determine whether there were higher numbers of resistant bacterial strains in the inlet wastewater sample than in the outlet wastewater and sludge samples. The results showed more antibiotic resistant bacteria in the sludge than in the inlet wastewater, and that the Enterobacteriaceae family was the predominant species in the collected samples. The most antibiotic-resistant families were found to be Streptococcacea and non-Enterobacteriaceae. Some bacterial strains were resistant to all the tested antibiotics. We conclude that the studied HWTP can be considered a source of resistant bacterial strains. It is suggested that outlet water and sludge generated in HWTPs should be monitored, and that efficient treatment to eliminate all bacteria from the different types of hospital waste released into the environment is adopted.
Collapse
Affiliation(s)
- Gisele Canan-Rochenbach
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Marco A B Barreiros
- Universidade Federal do Paraná (UFPR), Campus Palotina, Palotina, PR, 85950-000, Brazil
| | - André O S Lima
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Aline Dal Conti-Lampert
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rafael Ariente-Neto
- Universidade Federal do Paraná (UFPR), Campus Jandaia do Sul, Curso de Engenharia de Produção, Jandaia do Sul, PR, 86900-000, Brazil
| | - Wendell Pimentel-Almeida
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rosane Laçoli
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rogério Corrêa
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciências Farmacêuticas, Itajaí, SC, 88302-202, Brazil
| | - Claudemir M Radetski
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil.
| | - Sylvie Cotelle
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-57050, Metz, France
| |
Collapse
|
11
|
Elhoshi M, El-Sherbiny E, Elsheredy A, Aboulela AG. A correlation study between virulence factors and multidrug resistance among clinical isolates of Proteus mirabilis. Braz J Microbiol 2023; 54:1387-1397. [PMID: 37535261 PMCID: PMC10484824 DOI: 10.1007/s42770-023-01080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
Treatment of Proteus mirabilis infections is a challenge due to the high abundance of virulence factors and the high intrinsic resistance to antimicrobials. Multidrug resistance (MDR) and extensive drug resistance (XDR) further challenge the control of P. mirabilis infection. This study aimed to investigate the correlation between virulence determinants and multidrug resistance in 100 clinical isolates of P. mirabilis collected in Alexandria from December 2019 to June 2021. Susceptibility to antimicrobials was tested by the Kirby Bauer method. Detection of swarming, urease, protease, hemolysin, and biofilm formation was performed phenotypically and by PCR amplification of zapA, flaA, ureC, mrpA, atfA, ucaA, hpmA, and luxS. MDR and XDR were detected in 34% and 5%, respectively. All isolates were positive for motility, swarming, urease, and protease production. Ninety percent were positive for hemolysin production, while 73% formed biofilm. All isolates possessed the ureC and zapA genes. The luxS, flaA, ucaA, hpmA, mrpA, and atfA genes were detected in 99%, 98%, 96% 90%, 89%, and 84%, respectively. The presence of a single biofilm-related gene was statistically correlated with non-biofilm production (P= 0.018). It was concluded that P. mirabilis isolates from catheterized-urine samples were significantly associated with biofilm formation. MDR and virulence were not statistically correlated. A significant positive correlation was detected between some virulence genes in P. mirabilis. Non-MDR isolates of P. mirabilis had a high abundance of virulence factors with no statistically significant difference from MDR. Most of the MDR and all XDR isolates could produce biofilm.
Collapse
Affiliation(s)
- Mai Elhoshi
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eglal El-Sherbiny
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amel Elsheredy
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
12
|
da Silva JD, Bens L, Santos AJDC, Lavigne R, Soares J, Melo LDR, Vallino M, Dias RS, Drulis-Kawa Z, de Paula SO, Wagemans J. Isolation and Characterization of the Acadevirus Members BigMira and MidiMira Infecting a Highly Pathogenic Proteus mirabilis Strain. Microorganisms 2023; 11:2141. [PMID: 37763984 PMCID: PMC10537623 DOI: 10.3390/microorganisms11092141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Proteus mirabilis is an opportunistic pathogen and is responsible for more than 40% of all cases of catheter-associated urinary tract infections (CAUTIs). Healthcare-associated infections have been aggravated by the constant emergence of antibiotic-resistant bacterial strains. Because of this, the use of phages to combat bacterial infections gained renewed interest. In this study, we describe the biological and genomic features of two P. mirabilis phages, named BigMira and MidiMira. These phages belong to the Acadevirus genus (family Autographiviridae). BigMira and MidiMira are highly similar, differing only in four missense mutations in their phage tail fiber. These mutations are sufficient to impact the phages' depolymerase activity. Subsequently, the comparative genomic analysis of ten clinical P. mirabilis strains revealed differences in their antibiotic resistance profiles and lipopolysaccharide locus, with the latter potentially explaining the host range data of the phages. The massive presence of antimicrobial resistance genes, especially in the phages' isolation strain P. mirabilis MCS, highlights the challenges in treating infections caused by multidrug-resistant bacteria. The findings reinforce BigMira and MidiMira phages as candidates for phage therapy purposes.
Collapse
Affiliation(s)
- Jéssica Duarte da Silva
- Laboratory of Molecular Immunovirology, Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (J.D.d.S.); (A.J.d.C.S.); (J.S.); (S.O.d.P.)
| | - Lene Bens
- Laboratory of Gene Technology, Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, 3000 Leuven, Belgium; (L.B.); (R.L.)
| | - Adriele J. do Carmo Santos
- Laboratory of Molecular Immunovirology, Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (J.D.d.S.); (A.J.d.C.S.); (J.S.); (S.O.d.P.)
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, 3000 Leuven, Belgium; (L.B.); (R.L.)
| | - José Soares
- Laboratory of Molecular Immunovirology, Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (J.D.d.S.); (A.J.d.C.S.); (J.S.); (S.O.d.P.)
| | - Luís D. R. Melo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy, 10135 Torino, Italy;
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, 50-335 Wroclaw, Poland;
| | - Sérgio Oliveira de Paula
- Laboratory of Molecular Immunovirology, Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (J.D.d.S.); (A.J.d.C.S.); (J.S.); (S.O.d.P.)
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, 3000 Leuven, Belgium; (L.B.); (R.L.)
| |
Collapse
|
13
|
Lyu Z, Han S, Li J, Guo Z, Geng N, Lyu C, Qin L, Li N. Epidemiological investigation and drug resistance characteristics of Riemerella anatipestifer strains from large-scale duck farms in Shandong Province, China from March 2020 to March 2022. Poult Sci 2023; 102:102759. [PMID: 37209657 PMCID: PMC10209456 DOI: 10.1016/j.psj.2023.102759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023] Open
Abstract
Infectious serositis is a common disease caused by Riemerella anatipestifer (R. anatipestifer) in ducks, characterized by respiratory distress, septicemia, and neurological symptoms. In this study, 1,020 samples (brain and liver) were collected from ducks with suspected R. anatipestifer infection from March 2020 to March 2022 in Shandong Province, of which 171 R. anatipestifer strains were identified by PCR and isolation culture. The serotype of all strains was analyzed, and 74 strains were subjected to drug sensitivity tests and drug resistance genes detection. The results showed that the overall prevalence rate of R. anatipestifer in Shandong Province was 16.7% (171/1,020), with most strains coming from brain samples of ducklings under 3-mo old collected from September to December each year. Histopathological examination showed that heart vessels of the diseased duck were highly dilated and filled with red blood cells, with obvious fibrin exudates outside the pericardium, and fatty degeneration of liver cells. There were 45 strains of serotype 1, 45 strains of serotype 2, 2 strains of serotype 4, 33 strains of serotype 6, 44 strains of serotype 7, and 2 strains of serotype 10. The minimum inhibitory concentration (MIC) of 10 common antibiotics against 74 representative strains was determined by the agar dilution method. It was found that 74 strains had the most severe resistance to gentamicin (77%) and fully susceptible to ceftriaxone, but the 81.1% isolated strains were multidrug resistant. Resistance genes testing of 74 R. anatipestifers showed that tetracycline resistance gene tet X had the highest detection rate of 95.9%, followed by macrolide resistance gene ermF with 77%, and the rate of β-lactam resistance gene blaTEM is the lowest (10.8%). The animal experiment of 4 R. anatipestifer strains with different serotypes showed that they had strong pathogenicity to 7-day-old ducklings, which could cause nervous symptoms, and the mortality rate was 58% to 70%. The autopsy showed obvious pathological changes. These findings of this study on R. anatipestifer will help us to understand the latest prevalence, drug resistance characteristics, and pathogenicity of R. anatipestifer in Shandong, China, and provide a scientific guide for the treatment and control of the disease.
Collapse
Affiliation(s)
- Zehao Lyu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Shanshan Han
- Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Jing Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Zhiyun Guo
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Ningwei Geng
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Chuang Lyu
- Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Liting Qin
- Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Ning Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
14
|
Ma S, Shen J, Xu Y, Ding P, Gao X, Pan Y, Wu H, Hu G, He D. Epidemic characteristics of the SXT/R391 integrated conjugative elements in multidrug-resistant Proteus mirabilis isolated from chicken farm. Poult Sci 2023; 102:102640. [PMID: 37068352 PMCID: PMC10130350 DOI: 10.1016/j.psj.2023.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
This study was designed to depict prevalence and antimicrobial resistance characteristics of Proteus mirabilis (P. mirabilis) strains in 4 chicken farms and to probe the transfer mechanism of resistance genes. A total of 187 P. mirabilis isolates were isolated from 4 chicken farms. The susceptibility testing of these isolates to 14 antimicrobials showed that the multidrug resistance (MDR) rate was as high as 100%. The β-lactamase resistance genes blaOXA-1, blaCTX-M-1G, blaCTX-M-9G and colistin resistance gene mcr-1 were highly carried in the P. mirabilis isolates. An MDR strain W47 was selected for whole genome sequencing (WGS) and conjugation experiment. The results showed that W47 carried 23 resistance genes and 64 virulence genes, and an SXT/R391 integrated conjugative elements (ICEs) named ICEPmiChn5 carrying 17 genes was identified in chromosome. ICEPmiChn5 was able to be excised from the chromosome of W47 forming a circular intermediate, but repeated conjugation experiments were unsuccessful. Among 187 P. mirabilis isolates, 144 (77.01%, 144/187) isolates carried ICEPmiChn5-like ICEs, suggesting that ICEs may be the major vector for the transmission of resistance genes among MDR chicken P. mirabilis strains in this study. The findings were conducive to insight into the resistance mechanism of chicken P. mirabilis strains and provide a theoretical basis for the use of antibiotics for the treatment of MDR P. mirabilis infections in veterinary clinic.
Collapse
Affiliation(s)
- Shengnan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiaxing Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yakun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengyun Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiao Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
15
|
Liu C, Feng C, Duan Y, Wang P, Peng C, Li Z, Yu L, Liu M, Wang F. Ecological risk under the dual threat of heavy metals and antibiotic resistant Escherichia coli in swine-farming wastewater in Shandong Province, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120998. [PMID: 36603760 DOI: 10.1016/j.envpol.2022.120998] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Mineral elements and antibiotic-resistant bacterial pollutants in livestock and poultry farms' wastewater are often sources of ecological and public health problems. To understand the heavy-metal pollution status and the characteristics of drug-resistant Escherichia coli (E. coli) in swine-farm wastewater in Shandong Province and to provide guidance for the rational use of mineral-element additives, common antibiotics, and quaternary ammonium compound disinfectants on swine farms, 10 mineral elements were measured and E. coli isolated from wastewater and its resistance to 29 commonly used antibiotics and resistance genes was determined. Finally, phylogenetic and multi-locus sequence typing (MLST) analyses was performed on E. coli. The results showed serious pollution from iron and zinc, with a comprehensive pollution index of 708.94 and 3.13, respectively. It is worth noting that average iron levels in 75% (12/16) of the districts exceed allowable limits. Multidrug-resistant E. coli were found in every city of the province. The E. coli isolated from swine-farm wastewater were mainly resistant to tetracyclines (95.3%), chloramphenicol (77.8%), and sulfonamides (62.2%), while antibiotic resistance genes for quinolones, tetracyclines, sulfonamides, aminoglycosides, and β-lactams were all more than 60%. The clonal complex 10 (CC10) was prevalent, and ST10 and ST48 were dominant in E. coli isolates. Multidrug-resistant E. coli were widely distributed, with mainly A genotypes. However, the mechanism of the effect of iron on antibiotic resistance needs more study in this area. Thus, further strengthening the prevention and control of iron and zinc pollution and standardizing the use of antibiotics and mineral element additives in the swine industry are necessary.
Collapse
Affiliation(s)
- Cong Liu
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China.
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yuanpeng Duan
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Peng Wang
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Chong Peng
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Zixuan Li
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Lanping Yu
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Mengda Liu
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, PR China
| | - Fangkun Wang
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
16
|
Li C, Wang S, Chen S, Wang X, Deng X, Liu G, Chang W, Beckers Y, Cai H. Screening and Characterization of Pediococcus acidilactici LC-9-1 toward Selection as a Potential Probiotic for Poultry with Antibacterial and Antioxidative Properties. Antioxidants (Basel) 2023; 12:215. [PMID: 36829774 PMCID: PMC9952579 DOI: 10.3390/antiox12020215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Growing interest has been focused on lactic acid bacteria as alternatives to antimicrobial growth promoters, which are characterized by the production of various functional metabolites, such as antimicrobial and antioxidants compounds. The present study was undertaken to evaluate a potential probiotic from the antioxidant perspective. LC-9-1, screened from the intestines of healthy animals, was revealed to be Pediococcus acidilactici on the basis of its morphological, biochemical, and molecular characteristics. The strain has excellent properties, including acid-production efficiency, antibacterial performance and antioxidant activity. The safety of the strain was also evaluated. Furthermore, the experiments in broiler chickens suggested that dietary LC-9-1 supplementation improved the growth performance and decreased the abdominal fat, and enhanced the antioxidant capability and intestinal innate immunity of broilers. Analysis of intestinal microbiota showed that a higher community diversity (Shannon index) was achieved. In addition to the significantly increased relative abundances of Pediococcus spp., beneficial genera such as Rothia spp. and Ruminococcus spp. were abundant, while opportunistic pathogens such as Escherichia-Shigella spp. were significantly reduced in LC-9-1-supplemented broilers. Collectively, such in-depth characterization and the available data will guide future efforts to develop next-generation probiotics, and LC-9-1 could be considered a potential strain for further utilization in direct-fed microbial or starter culture for fermentation.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Shaolong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Si Chen
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Xiaoying Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Xuejuan Deng
- National Engineering Research Center of Biological Feed, Beijing 100081, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Yves Beckers
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- National Engineering Research Center of Biological Feed, Beijing 100081, China
| |
Collapse
|
17
|
Ma WQ, Han YY, Zhou L, Peng WQ, Mao LY, Yang X, Wang Q, Zhang TJ, Wang HN, Lei CW. Contamination of Proteus mirabilis harbouring various clinically important antimicrobial resistance genes in retail meat and aquatic products from food markets in China. Front Microbiol 2022; 13:1086800. [PMID: 36590410 PMCID: PMC9802577 DOI: 10.3389/fmicb.2022.1086800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Proteus mirabilis is an opportunistic pathogen frequently associated with nosocomial infection and food poisoning cases. Contamination of P. mirabilis in retail meat products may be important transmission routes for human infection with P. mirabilis. In this study a total of 89 P. mirabilis strains were isolated from 347 samples in 14 food markets in China and subjected to whole-genome sequencing. Phylogenetic analysis showed that all 89 strains were divided into 81 different clones (SNPs >5), indicating high genetic diversity of P. mirabilis in food markets. Antimicrobial susceptibility testing showed that 81 (91.01%) strains displayed multidrug resistance profiles. Seventy-three different resistance genes (or variants) were found, including various clinically important antimicrobial resistance genes aac(6')-Ib-cr (77.53%), bla CTX-M (39.33%), fosA3 (30.34%), as well as multiresistance gene cfr (4.50%), tigecycline resistance gene cluster tmexCD3-toprJ1 (4.50%) and carbapenemase gene bla NDM-1 (1.12%). Diverse genetic elements including Tn7 transposon, plasmid, SXT/R391 integrative conjugative element were associated with the horizontal transfer of cfr. tmexCD3-toprJ1 and bla NDM-1 were located on ICEPmiChnJZ26 and Salmonella genomic island 1, respectively. Our study emphasized high contamination of P. mirabilis harbouring various clinically important antimicrobial resistance genes in retail meat and aquatic products, which might be an important issue in terms of food safety and human health.
Collapse
|
18
|
Controlled Intestinal Microbiota Colonisation in Broilers under the Industrial Production System. Animals (Basel) 2022; 12:ani12233296. [PMID: 36496817 PMCID: PMC9740664 DOI: 10.3390/ani12233296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The concept of designer microbiota in chicken is focused on early exposure of the hatchlings to pathogen-free microbiota inoculum, limiting the early access to harmful and pathogenic microorganisms, thus promoting colonisation of the gut with beneficial and natural poultry microbiota. In this study, we controlled colonisation of the intestine in broiler chickens in a large-scale industrial setting via at-hatch administration of a commercial product containing a highly diverse microbiota originating from the chicken caecum. The treatment significantly transformed the microbiota membership in the crop, proventriculus, jejunum and caecum and significantly altered the taxa abundance in the jejunum, jejunum mucosa, and caecum estimated using PERMANOVA and unweighted and weighted UniFrac distances, respectively. The treatment also improved the growth rate in chickens with no significant alteration in feed conversion ratio. A comparison of inoculum product microbiota structure revealed that the inoculum had the highest Shannon diversity index compared to all investigated gut sections, and the number of Observed Species second only to the caecal community. PCoA plots using weighted or unweighted UniFrac placed the inoculum samples together with the samples from the caecal origin.
Collapse
|
19
|
Antimicrobial Resistance and Virulence Factors of Proteus mirabilis Isolated from Dog with Chronic Otitis Externa. Pathogens 2022; 11:pathogens11101215. [PMID: 36297273 PMCID: PMC9612330 DOI: 10.3390/pathogens11101215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Otitis externa is among the most prevalent diseases in dogs. If the underlying cause is not addressed, bacterial reinfection becomes frequent, necessitating antibiotic administration for an extended period of time. Prolonged treatment promotes the emergence of antibiotic-resistant bacteria and increases the risk of their transmission from animals to humans. This study aimed to analyze the antibiotic resistance pattern of the emerging pathogen Proteus mirabilis to identify bacterial virulence and antibiotic selection. Samples were collected from randomly encountered dogs with chronic otitis externa. Thirty-two strains of P. mirabilis were isolated and identified, using MALDI-TOF. The Kirby-Bauer disk diffusion method was used to assess the antibiotic susceptibility of P. mirabilis to 11 antibiotics. The isolates (n = 32) were most resistant to cefazolin (75%), trimethoprim–sulfamethoxazole (72%), chloramphenicol (72%), amoxicillin–clavulanate (63%), ampicillin (59%), cefepime (56%), ciprofloxacin (53%), aztreonam (50%), ceftazidime avibactam (50%), gentamicin (22%), and amikacin (16%). Moreover, 75% of isolates were found to be multidrug-resistant bacteria. P. mirabilis was found to have a high resistance-pattern ratio. Although the exact cause is unknown, continuous antibiotic use is thought to be a major factor. We concluded that antibiotic use must be prudent and selective to prevent antibiotic resistance.
Collapse
|
20
|
Shaaban M, Elshaer SL, Abd El-Rahman OA. Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates. BMC Microbiol 2022; 22:247. [PMID: 36221063 PMCID: PMC9552493 DOI: 10.1186/s12866-022-02662-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Proteus mirabilis is an opportunistic pathogen, causing a variety of community-acquired and nosocomial illnesses. It poses a potential threat to patients via the production of β-lactamases, which decrease the efficacy of antimicrobial treatment and impair the management of its pathogenicity. Hence, this study was established to determine the prevalence of extended-spectrum β-lactamases (ESBLs), AmpC, and carbapenemases of P. mirabilis isolated from various clinical specimens. Results Proteus mirabilis was identified in 20.7% (58/280) of specimens. ESBL producers were present at a rate of 51.7% (30/58). All AmpC-positive isolates (n = 20) produced ESBLs as well, so 66.7% of ESBL-producing isolates coproduced AmpC enzymes. The modified Hodge test confirmed carbapenemase production in six out of seven imipenem nonsusceptible isolates. Of these, only two (5.7%) isolates were also ESBL-and AmpC-positive. Antibiotic resistance reached the highest level for cotrimoxazole (62.1%, n = 36/58 isolates) and the lowest for imipenem (12.1%, n = 7/58 isolates). The levels of multidrug-resistant (MDR) was 41.4% among the tested isolates. The blaSHV (83.3%), blaAmpC (80%), and blaVIM-1 (50%) were the most detected genes in phenotypically confirmed ESBL-, AmpC-, and carbapenemase-producing isolates, respectively. Besides, more than a half of the tested P. mirabilis strains (53%) coproduced ESBLs and AmpC. Moreover, two isolates coproduced ESBLs and AmpC together with carbapenemases. Furthermore, dendrogram analysis showed great genetic divergence based on the 21 different enterobacterial repetitive intergenic consensus (ERIC) patterns (P1–P21) through the 34 β-lactamase producers. ERIC analysis distinguished clonal similarities between isolates 21 and 22 in P2 and 9 and 10 in P4, which were isolated from the same clinical source and possessed similar patterns of β-lactamase-encoding genes. Conclusion Hence, there is an urgent need to monitor hospitalized patients and improve healthcare in order to reduce the incidence of infection and outbreaks of infection with antibiotic-resistant Proteus. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02662-3.
Collapse
Affiliation(s)
- Mona Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Soha Lotfy Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ola A Abd El-Rahman
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
| |
Collapse
|
21
|
Molecular Characterizations and Antimicrobial Susceptibility of Extended-Spectrum ß-lactamase (ESBL) Producing Proteus spp. Clinical Isolates in Babol, Northern Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.3.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
22
|
Qu X, Zhou J, Huang H, Wang W, Xiao Y, Tang B, Liu H, Xu C, Xiao X. Genomic Investigation of Proteus mirabilis Isolates Recovered From Pig Farms in Zhejiang Province, China. Front Microbiol 2022; 13:952982. [PMID: 35875581 PMCID: PMC9300985 DOI: 10.3389/fmicb.2022.952982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Proteus mirabilis is a common opportunistic zoonotic pathogen, and its ongoing acquisition of antimicrobial resistance genes poses challenges to clinical treatments. Human-sourced whole genomic sequencing of human P. mirabilis isolates has been reported, but pig-sourced isolates have not been thoroughly investigated even though these animals can serve as reservoirs for human infections. In the current study, we report a molecular epidemiological investigation to unravel the antimicrobial and virulence gene risk factors for P. mirabilis contamination in 9 pig farms in 3 different cities in Zhejiang Province, China. We collected 541 swab samples from healthy pigs and 30 were confirmed as P. mirabilis. All 30 isolates were resistant to tetracyclines, macrolides, sulfonamides, β-lactams and chloramphenicol, and all were multiple drug-resistant and 27 were strong biofilm formers. Phylogenetic analyses indicated these 30 isolates clustered together in 2 major groups. Whole genome sequencing demonstrated that the isolates possessed 91 different antimicrobial resistance genes belonging to 30 antimicrobial classes including rmtB, sul1, qnrS1, AAC(6′) − Ib − cr, blaCTX − M − 65 and blaOXA − 1. All isolates contained mobile genetic elements including integrative conjugative elements (ICEs) and integrative and mobilizable elements (IMEs). Minimum inhibitory concentration (MIC) testing indicated direct correlates between cognate genes and antimicrobial resistance. We also identified 95 virulence factors, almost all isolates contained 20 fimbrial and flagellar operons, and this represents the greatest number of these operon types found in a single species among all sequenced bacterial genomes. These genes regulate biofilm formation and represent a confounding variable for treating P. mirabilis infections. Our P. mirabilis isolates were present in healthy animals, and multiple drug resistance in these isolates may serve as a reservoir for other intestinal and environmental Enterobacteriaceae members. This prompts us to more strictly regulate veterinary antibiotic use.
Collapse
Affiliation(s)
- Xiaoyun Qu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Zhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haoqi Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanlin Liu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chenggang Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Chenggang Xu,
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xingning Xiao,
| |
Collapse
|
23
|
Li Z, Xin L, Peng C, Liu C, Wang P, Yu L, Liu M, Wang F. Prevalence and Antimicrobial Susceptibility Profiles of ESBL-producing Klebsiella Pneumoniae from Broiler Chicken Farms in Shandong Province, China. Poult Sci 2022; 101:102002. [PMID: 35841631 PMCID: PMC9289847 DOI: 10.1016/j.psj.2022.102002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 10/25/2022] Open
|
24
|
Yu L, Liu Y, Liu M, Li Z, Li L, Wang F. Research Note: Molecular characterization of antimicrobial resistance and virulence gene analysis of Enterococcus faecalis in poultry in Tai'an, China. Poult Sci 2022; 101:101763. [PMID: 35263706 PMCID: PMC8904221 DOI: 10.1016/j.psj.2022.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/07/2022] Open
Abstract
Enterococcus faecalis (E. faecalis) is a zoonotic pathogen that causes severe economic losses in the poultry-breeding industry. In our study, cecal samples from broilers with cecal enlargement at slaughterhouses in Tai'an, China, were analyzed. The results revealed that the 61 E. faecalis strains had drug resistance rates ranging from 96.72 to 8.20% against 11 antibiotics in 5 classes, of which erythromycin (96.72%) and tetracycline (96.72%) had the highest rates and vancomycin (8.20%) the lowest. The highest detection rate of multiple drug-resistant strains in 61 isolates was 72.13%. The results of polymerase chain reaction showed that, of the 12 virulence genes, ccf had the highest detection rate (80.33%), followed by asal and cob (both 78.69%), whereas hyl had the lowest (6.56%). Among 15 drug resistance genes, ermB had the highest detection rate (95.08%), followed by tetM (91.80%) and tetL (90.16%), whereas tetK (0.00%) and vanB (0.00%) remained undetected. Of the 34 sequence types found with multilocus sequence typing, the most predominant were ST631 (13.11%, 8/61) and ST634 (8.2%, 5/61). Our results provide a theoretical basis for guiding the rational use of antibiotics and preventing the spread of drug-resistant bacteria, along with epidemiological data for the risk analysis of food-borne bacteria and antimicrobial resistance in poultry farms in Shandong Province.
Collapse
|