1
|
T-Thienprasert NP, Jaithon T, Klomkliew P, Chanchaem P, Suwanasopee T, Koonawootrittriron S, Kovitvadhi A, Chundang P, Pongprayoon P, Kityakarn S, Luksirikul P, Payungporn S. Comparative Analysis of the Gut Microbiota of Thai Indigenous Chicken Fed House Crickets. Animals (Basel) 2025; 15:1070. [PMID: 40218462 PMCID: PMC11987825 DOI: 10.3390/ani15071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
The gut microbiota is pivotal to chickens' overall health, influencing digestion, nutrient absorption, and immune function. Dietary compounds significantly impact gut microbiota composition. House crickets (Acheta domesticus) have emerged as an alternative protein source for animal feed, rich in proteins and beneficial fatty acids. This study compared the gut microbiota in the cecum and ileum of Thai indigenous chicken breeds (Betong Chicken, white feather with black bone chicken, and black feather with black bone chicken) fed with or without house crickets. Using Oxford Nanopore Technology of 16S rDNA, this study found a similar relative abundance of gut bacteria across groups, with dominant bacteria including Firmicute, Bacteroidetes, Proteobacteria, and Actinobacteria. LEfSe analysis identified differential abundance of beneficial bacteria, such as Ruminococcaceae, Rikenella, and Deferribacteres, in the cecum of the black feather with black bone chicken after cricket feeding. Additionally, Lactobacillaceae exhibited differential abundance in the ileum of this breed post-cricket diet. Consequently, this study provides new data into the gut microbiota of Thai indigenous chickens. It suggests that house cricket diets did not significantly alter microbiota diversity but may enhance beneficial bacteria in certain breeds.
Collapse
Affiliation(s)
| | - Titiradsadakorn Jaithon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.K.); (P.C.)
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.K.); (P.C.)
| | - Thanathip Suwanasopee
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (T.S.); (S.K.)
| | - Skorn Koonawootrittriron
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (T.S.); (S.K.)
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.K.); (P.C.)
| | - Pipatpong Chundang
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.K.); (P.C.)
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.P.); (S.K.); (P.L.)
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Sutasinee Kityakarn
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.P.); (S.K.); (P.L.)
| | - Patraporn Luksirikul
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.P.); (S.K.); (P.L.)
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.K.); (P.C.)
| |
Collapse
|
2
|
Bhagat NR, Bharti VK, Shukla G, Rishi P, Chaurasia OP. Gut bacteriome dynamics in high altitude-adapted chicken lines: a key to future poultry therapeutics. Sci Rep 2025; 15:11910. [PMID: 40195460 PMCID: PMC11976950 DOI: 10.1038/s41598-025-96178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
High-altitude-adapted chickens harbor a unique gut bacteriome essential for their survival under extremely cold and hypoxic environment, however, little is known about their population and functional dynamics, limiting their application in poultry production. Hence, this study employed amplicon-based metagenomics to examine the gut bacterial diversity and their functional profile in two high-altitude-adapted chicken lines, e.g. LEHBRO-1 and LEHBRO-3. The results revealed significant variations in taxonomic abundance at the phylum level, with Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria predominating in LEHBRO-1, whereas Firmicutes, Proteobacteria, Bacteroidetes, Planctomycetes, and Actinobacteria predominated in LEHBRO-3. Genus-level diversity and Linear Discriminant Analysis Effect Size (LEfSe) biomarker analysis also substantiated the differences in the gut bacterial communities between the two chicken lines. Furthermore, functional profiling revealed enrichment of carbohydrate, nucleotide, lipid, amino acid, fatty acid, energy, and glycan metabolic pathways in the gut bacteriomes of these high-altitude chicken lines. The Statistical Analysis of Metagenomic Profiles (STAMP) for metabolic profiling identified a significant difference in purine and protein metabolism between these two chicken lines. These findings indicate the unique gut bacteriome and their functional diversity in high-altitude-adapted chickens, which would provide a foundation for future research on gut therapeutics to improve chicken health and productivity in high-altitude areas.
Collapse
Affiliation(s)
- Neha R Bhagat
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, UT Ladakh, 194101, India
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, UT Ladakh, 194101, India.
| | - Geeta Shukla
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| | - O P Chaurasia
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, UT Ladakh, 194101, India
| |
Collapse
|
3
|
Reheman A, Wang Z, Gao R, He J, Huang J, Shi C, Qi M, Feng X. Effect of Ascites Syndrome on Diversity of Cecal Microbiota of Broiler Chickens. Vet Sci 2025; 12:126. [PMID: 40005886 PMCID: PMC11860267 DOI: 10.3390/vetsci12020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Ascites syndrome (AS) is a metabolic disease that seriously affects the growth and development of broiler chickens. Intestinal microbiota play a significant role in the growth of broiler chickens. Therefore, further research on the relationship between AS and intestinal microbiota will help to better understand the impact of AS on broiler growth. In this study, 0.2% sodium chloride was added to the drinking water, which induced AS in broiler chickens, and we detected the influence of AS on the growth performance and cecal microbiota of broiler chickens. The results showed that AS significantly reduced the cecal microbial diversity of broiler chickens and affected the cecal microbial composition at the phylum and genus levels (p = 0.05). Further, LEfSe analysis revealed that AS significantly increased the abundance of Bacteroidetes (p = 0.035) while simultaneously reducing the abundance of Actinobacteria (p = 0.031) in the cecum. Additionally, the differential metabolites associated with polycyclic aromatic hydrocarbon degradation were significantly diminished. The findings suggest that AS may further impact the growth rate of broiler chickens by altering cecal microorganisms.
Collapse
Affiliation(s)
- Aikebaier Reheman
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (A.R.); (M.Q.)
| | - Zhichao Wang
- Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production & Construction Corps, Alar 843300, China; (Z.W.); (R.G.); (J.H.)
| | - Ruihuan Gao
- Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production & Construction Corps, Alar 843300, China; (Z.W.); (R.G.); (J.H.)
| | - Jiang He
- Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production & Construction Corps, Alar 843300, China; (Z.W.); (R.G.); (J.H.)
| | - Juncheng Huang
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar 843300, China; (J.H.); (C.S.)
| | - Changqing Shi
- Key Laboratory of Livestock and Forage Resources Utilization around Tarim, Ministry of Agriculture and Rural Affairs, Tarim University, Alar 843300, China; (J.H.); (C.S.)
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (A.R.); (M.Q.)
| | - Xinwei Feng
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (A.R.); (M.Q.)
| |
Collapse
|
4
|
Yu W, Yang J, Teng LW, Zhao XL, Zhu ZY, Cui S, Du WG, Liu ZS, Zeng ZG. Reciprocal translocation experiments reveal gut microbiome plasticity and host specificity in a Qinghai-Xizang Plateau lizard. Zool Res 2025; 46:139-151. [PMID: 39846192 DOI: 10.24272/j.issn.2095-8137.2024.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition. The gut microbiome, highly responsive to external environmental factors, plays a crucial role in host adaptability and may facilitate local adaptation within species. Concurrently, the genetic background of host populations influences gut microbiome composition, highlighting the bidirectional relationship between host and microbiome. Despite this, our understanding of gut microbiome plasticity and its role in host adaptability remains limited, particularly in reptiles. To clarify this issue, we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards ( Phrynocephalus vlangalii) between high-altitude (2 600 m a.s.l.) and superhigh-altitude (3 600 m a.s.l.) environments on Dangjin Mountain of the Qinghai-Xizang Plateau, China. One year later, we assessed the phenotypes and gut microbiomes of their offspring. Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations. High-altitude conditions increased diversity, and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments. Additionally, superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity, potentially linked to their lower growth rates. Overall, these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients. Furthermore, this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity, offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.
Collapse
Affiliation(s)
- Wei Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Wei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China
| | - Xiao-Long Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Shanghai Institute of Wildlife Epidemics, East China Normal University, Shanghai 200241, China
| | - Ze-Yu Zhu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen-Sheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China. E-mail:
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| |
Collapse
|
5
|
Du J, Zheng P, Gao W, Liang Q, Leng L, Shi L. All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama ( Phrynocephalus axillaris) to different altitudes. Front Microbiol 2025; 15:1501684. [PMID: 39845039 PMCID: PMC11751238 DOI: 10.3389/fmicb.2024.1501684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama (Phrynocephalus axillaris) at different altitudes (-80 m to 2000 m). The results demonstrated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phylum, Lachnospiraceae and Oscillospiraceae were the most abundant family, and the low-altitude populations had higher richness than high-altitude populations; Akkermansiaceae appeared to be enriched in high-altitude populations and the relative abundance tended to increase with altitude. The gut microbiome of three populations of P. axillaris at different altitudes was clustered into two different enterotypes, low-altitude populations and high-altitude populations shared an enterotype dominated by Akkermansia, Kineothrix, Phocaeicola; intermediate-altitude populations had an enterotype dominated by Mesorhizobium, Bradyrhizobium. Metabolites involved in amino acid and lipid metabolism differed significantly at different altitudes. The above results suggest that gut microbiome plasticity drives the extensive adaptation of P. axillaris to multi-stress caused by different altitudes. With global warming, recognizing the adaptive capacity of wide-ranging species to altitude can help plan future conservation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
6
|
Huang L, Zheng Y, Feng S, Wu B, Chen L, Xu X, Wang B, Li W, Zhou C, Zhang L. Seasonal Changes and Age-Related Effects on the Intestinal Microbiota of Captive Chinese Monals ( Lophophorus lhuysii). Animals (Basel) 2024; 14:3418. [PMID: 39682382 DOI: 10.3390/ani14233418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The Chinese monal (Lophophorus lhuysii) is a large-sized and vulnerable (VU in IUCN) bird from southwestern China. This study applied 16S rRNA high-throughput sequencing to comprehensively examine the gut microbiota of captive Chinese monals (located in Baoxing, Sichuan, China) across varying seasons and life stages. Dominant bacterial phyla identified included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Significant seasonal and age-associated shifts were observed within specific bacterial groups, particularly marked by seasonal fluctuations in beta diversity. Moreover, linear discriminant analysis effect size (LEfSe) and functional predictions highlighted distinct winter signatures, indicating possible functional shifts in energy metabolism and disease resistance. In mid-aged adults, an expansion of Gamma-Proteobacteria suggested an elevated susceptibility of the gut microbiota of Chinese monals to chronic disorders and microbial imbalance. Putative pathogenic bacteria exhibited increased abundance in spring and summer, likely driven by temperature, host physiological cycles, interspecies interactions, and competition. These findings imply that the diversity, and structure of the gut microbiota in captive Chinese monals are strongly influenced by seasonal and age-related factors. The insights provided here are essential for improving breeding strategies and preventing gastrointestinal diseases in captivity.
Collapse
Affiliation(s)
- Lijing Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Yanchu Zheng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Shaohua Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Li Chen
- Management and Protection Center of Sichuan Fengtongzhai National Nature Reserve, Ya'an 625700, China
| | - Xiaoqin Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Bin Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Wanhong Li
- Management and Protection Center of Sichuan Fengtongzhai National Nature Reserve, Ya'an 625700, China
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Long Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| |
Collapse
|
7
|
Zeng T, Cao Y, Yin J, Feng P, Tian Y, Sun H, Gu T, Zong Y, Ma X, Zhao Z, Chen L, Xu W, Han W, Lu L. Unraveling the gut microbiota of Tibetan chickens: insights into highland adaptation and ecological advantages. Microbiol Spectr 2024; 12:e0051924. [PMID: 39345125 PMCID: PMC11536995 DOI: 10.1128/spectrum.00519-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/15/2024] [Indexed: 10/01/2024] Open
Abstract
Tibetan animals have several unique advantages owing to the harsh ecological conditions under which they live. However, compared to Tibetan mammals, understanding of the advantages and underlying mechanisms of the representative high-latitude bird, the Tibetan chicken (Gallus gallus, TC), remains limited. The gut microbiota of animals has been conclusively shown to be closely related to both host health and host environmental adaptation. This study aimed to explore the relationships between the cecal microbiome and the advantages of TCs based on comparisons among three populations: native TCs residing on the plateau, domestic TCs living in the plain, and one native plain species. Metatranscriptomic sequencing revealed a significant enrichment of active Bacteroidetes but a loss of active Firmicutes in native TCs. Additionally, the upregulated expression of genes in the cecal microbiome of native TCs showed enriched pathways related to energy metabolism, glycan metabolism, and the immune response. Furthermore, the expression of genes involved in the biosynthesis of short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) was upregulated in the cecal microbiome of native TCs. Data from targeted metabolomics further confirmed elevated levels of certain SCFAs and SBAs in the cecum of native TCs. Based on the multi-omics association analysis, we proposed that the higher ratio of active Bacteroidetes/Firmicutes may be attributed to the efficient energy metabolism and stronger immunological activity of native TCs. Our findings provide a better understanding of the interactions between gut microbiota and highland adaptation, and novel insights into the mechanisms by which Tibetan chickens adapt to the plateau hypoxic environment. IMPORTANCE The composition and function of the active cecal microbiome were significantly different between the plateau Tibetan chicken population and the plain chicken population. Higher expression genes related to energy metabolism and immune response were found in the cecal microbiome of the plateau Tibetan chicken population. The cecal microbiome in the plateau Tibetan chicken population exhibited higher biosynthesis of short-chain fatty and secondary bile acids, resulting in higher cecal content of these metabolites. The active Bacteroidetes/Firmicutes ratio in the cecal microbiome may contribute to the high-altitude adaptive advantage of the plateau Tibetan chicken population.
Collapse
Affiliation(s)
- Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianmei Yin
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Peishi Feng
- Zhejiang University of Technology, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yibo Zong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueying Ma
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co. Ltd., Shanghai, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Han
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
8
|
Jiang X, Zhang B, Gou Q, Cai R, Sun C, Li J, Yang N, Wen C. Variations in seminal microbiota and their functional implications in chickens adapted to high-altitude environments. Poult Sci 2024; 103:103932. [PMID: 38972291 PMCID: PMC11263954 DOI: 10.1016/j.psj.2024.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Seminal fluid, once believed to be sterile, is now recognized as constituting a complex and dynamic environment inhabited by a diverse community of micro-organisms. However, research on the seminal microbiota in chickens is limited, and microbiota variations among different chicken breeds remain largely unexplored. In this study, we collected semen samples from Beijing You Chicken (BYC) and Tibetan Chicken (TC) and explored the characteristics of the microbiota using 16S rRNA gene sequencing. Additionally, we collected cloacal samples from the TC to control for environmental contamination. The results revealed that the microbial communities in the semen were significantly different from those in the cloaca. Firmicutes and Actinobacteriota were the predominant phyla in BYC and TC semen, respectively, with Lactobacillus and Phyllobacterium being the dominant genera in each group. Additionally, the seminal microbiota of BYC exhibited greater richness and evenness than that of TC. Principal coordinate analysis (PCoA) indicated significant intergroup differences between the seminal microbiotas of BYC and TC. Subsequently, by combining linear discriminant analysis effect size and random forest analyses, we identified Lactobacillus as the predominant microorganism in BYC semen, whereas Phyllobacterium dominated in TC semen. Furthermore, co-occurrence network analysis revealed a more intricate network in the BYC group than in the TC group. Additionally, unique microbial functional characteristics were observed in each breed, with TC exhibiting metabolic features potentially associated with their ability to adapt to high-altitude environments. The results of this study emphasized the unique microbiota present in chicken semen, which may be influenced by genetics and evolutionary history. Significant variations were observed between low-altitude and high-altitude breeds, highlighting the breed-specific implications of the seminal microbiota for reproduction and high-altitude adaptation.
Collapse
Affiliation(s)
- Xinwei Jiang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Boxuan Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Qinli Gou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ronglang Cai
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China.
| |
Collapse
|
9
|
Glendinning L, Jia X, Kebede A, Oyola SO, Park JE, Park W, Assiri A, Holm JB, Kristiansen K, Han J, Hanotte O. Altitude-dependent agro-ecologies impact the microbiome diversity of scavenging indigenous chicken in Ethiopia. MICROBIOME 2024; 12:138. [PMID: 39044244 PMCID: PMC11267795 DOI: 10.1186/s40168-024-01847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/28/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Scavenging indigenous village chickens play a vital role in sub-Saharan Africa, sustaining the livelihood of millions of farmers. These chickens are exposed to vastly different environments and feeds compared to commercial chickens. In this study, we analysed the caecal microbiota of 243 Ethiopian village chickens living in different altitude-dependent agro-ecologies. RESULTS Differences in bacterial diversity were significantly correlated with differences in specific climate factors, topsoil characteristics, and supplemental diets provided by farmers. Microbiota clustered into three enterotypes, with one particularly enriched at high altitudes. We assembled 9977 taxonomically and functionally diverse metagenome-assembled genomes. The vast majority of these were not found in a dataset of previously published chicken microbes or in the Genome Taxonomy Database. CONCLUSIONS The wide functional and taxonomic diversity of these microbes highlights their importance in the local adaptation of indigenous poultry, and the significant impacts of environmental factors on the microbiota argue for further discoveries in other agro-ecologies. Video Abstract.
Collapse
Affiliation(s)
- Laura Glendinning
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.
| | - Xinzheng Jia
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China.
| | - Adebabay Kebede
- CTLGH - LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Amhara Regional Agricultural Research Institute, Bahir Dar, Ethiopia
| | - Samuel O Oyola
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Jong-Eun Park
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 63243, Jeju, Republic of Korea
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 55365, Wanju, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 55365, Wanju, Republic of Korea
| | - Abdulwahab Assiri
- School of Life Sciences, the University of Nottingham, University Park, Nottingham, UK
- Department of Animal and Fisheries Production, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Jacob Bak Holm
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Clinical Microbiomics, Copenhagen, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, People's Republic of China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory On Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, People's Republic of China
| | - Olivier Hanotte
- CTLGH - LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia.
- School of Life Sciences, the University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
10
|
Bai X, Zhong H, Cui X, Wang T, Gu Y, Li M, Miao X, Li J, Lu L, Xu W, Li D, Sun J. Metagenomic profiling uncovers microbiota and antibiotic resistance patterns across human, chicken, pig fecal, and soil environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174734. [PMID: 39002589 DOI: 10.1016/j.scitotenv.2024.174734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The ongoing and progressive evolution of antibiotic resistance presents escalating challenges for the clinical management and prevention of bacterial infections. Understanding the makeup of resistance genomes and accurately quantifying the current abundance of antibiotic resistance genes (ARGs) are crucial for assessing the threat of antimicrobial resistance (AMR) to public health. This comprehensive study investigated the distribution and diversity of bacterial community composition, ARGs, and virulence factors (VFs) across human, chicken, pig fecal, and soil microbiomes in various provinces of China. As a result, multidrug resistance was identified across all samples. Core ARGs primarily related to multidrug, MLS (Macrolides-Lincosamide-Streptogramins), and tetracycline resistance were characterized. A significant correlation between ARGs and bacterial taxa was observed, especially in soil samples. Probiotic strains such as Lactobacillus harbored ARGs, potentially contributing to the dissemination of antibiotic resistance. We screened subsets of ARGs from samples from different sources as indicators to assess the level of ARGs contamination in samples, with high accuracy. These results underline the complex relationship between microbial communities, resistance mechanisms, and environmental factors, emphasizing the importance of continued research and monitoring to better understand these dynamics.
Collapse
Affiliation(s)
- Xue Bai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hang Zhong
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Xiang Cui
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yiren Gu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaomeng Miao
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Jing Li
- College of Agriculture, Kunming University, Kunming 650214, China
| | - Lizhi Lu
- National Center of Technology Innovation for Swine, Chongqing 402460, China
| | - Wenwu Xu
- National Center of Technology Innovation for Swine, Chongqing 402460, China.
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402461, China.
| |
Collapse
|
11
|
Zhu Y, Wang J, Cidan Y, Wang H, Li K, Basang W. Gut Microbial Adaptation to Varied Altitudes and Temperatures in Tibetan Plateau Yaks. Microorganisms 2024; 12:1350. [PMID: 39065118 PMCID: PMC11278572 DOI: 10.3390/microorganisms12071350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The yak (Bos grunniens) exhibits exceptional regional adaptability, enabling it to thrive in the distinctive ecological niches of the Qinghai-Tibet Plateau. Its survival relies on the intricate balance of its intestinal microbiome, essential for adapting to harsh environmental conditions. Despite the documented significance of bacteria and fungi in maintaining intestinal homeostasis and supporting immune functions, there is still a substantial gap in understanding how the composition and functionality of yak gut microbiota vary along altitude-temperature gradients. This study aims to fill this gap by employing 16S rRNA and ITS amplicon sequencing techniques to analyze and compare the intestinal microbiome of yaks residing at different elevations and exposed to varying temperatures. The findings demonstrate subtle variations in the diversity of intestinal bacteria and fungi, accompanied by significant changes in taxonomic composition across various altitudes and temperature gradients. Notably, Firmicutes, Actinobacteriota, and Bacteroidota emerged as the dominant phyla across all groups, with Actinobacteriota exhibiting the highest proportion (35.77%) in the LZF group. Functional prediction analysis revealed significant associations between the LZF group and metabolic pathways related to amino acid metabolism and biosynthesis. This suggests a potential role for actinomycetes in enhancing nutrient absorption and metabolism in yaks. Furthermore, our findings suggest that the microbiota of yaks may enhance energy metabolism and catabolism by modulating the Firmicutes-to-Bacteroidota ratio, potentially mitigating the effects of temperature variations. Variations in gut bacterial and fungal communities among three distinct groups were analyzed using metagenomic techniques. Our findings indicate that microbial genera exhibiting significant increases in yaks at lower altitudes are largely beneficial. To sum up, our research investigated the changes in gut bacterial and fungal populations of yaks residing across diverse altitude and temperature ranges. Moreover, these results enhance comprehension of gut microbial makeup and variability, offering perspectives on the environmental resilience of dry lot feeding yaks from a microbial angle.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
- Linzhou Animal Husbandry and Veterinary Station, Lhasa 850009, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| |
Collapse
|
12
|
Liu D, Chen D, Xiao J, Wang W, Zhang LJ, Peng H, Han C, Yao H. High-altitude-induced alterations in intestinal microbiota. Front Microbiol 2024; 15:1369627. [PMID: 38784803 PMCID: PMC11111974 DOI: 10.3389/fmicb.2024.1369627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In high-altitude environments characterized by low pressure and oxygen levels, the intestinal microbiota undergoes significant alterations. Whether individuals are subjected to prolonged exposure or acute altitude changes, these conditions lead to shifts in both the diversity and abundance of intestinal microbiota and changes in their composition. While these alterations represent adaptations to high-altitude conditions, they may also pose health risks through certain mechanisms. Changes in the intestinal microbiota induced by high altitudes can compromise the integrity of the intestinal mucosal barrier, resulting in gastrointestinal dysfunction and an increased susceptibility to acute mountain sickness (AMS). Moreover, alterations in the intestinal microbiota have been implicated in the induction or exacerbation of chronic heart failure. Targeted modulation of the intestinal microbiota holds promise in mitigating high-altitude-related cardiac damage. Dietary interventions, such as adopting a high-carbohydrate, high-fiber, low-protein, and low-fat diet, can help regulate the effects of intestinal microbiota and their metabolic byproducts on intestinal health. Additionally, supplementation with probiotics, either through dietary sources or medications, offers a means of modulating the composition of the intestinal microbiota. These interventions may offer beneficial effects in preventing and alleviating AMS following acute exposure to high altitudes.
Collapse
Affiliation(s)
- Dan Liu
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Dan Chen
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Jian Xiao
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Wei Wang
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Li-Juan Zhang
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Hui Peng
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Chuan Han
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Hao Yao
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Ma Y, Cai G, Chen J, Yang X, Hua G, Han D, Li X, Feng D, Deng X. Combined transcriptome and metabolome analysis reveals breed-specific regulatory mechanisms in Dorper and Tan sheep. BMC Genomics 2024; 25:70. [PMID: 38233814 PMCID: PMC10795462 DOI: 10.1186/s12864-023-09870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Dorper and Tan sheep are renowned for their rapid growth and exceptional meat quality, respectively. Previous research has provided evidence of the impact of gut microbiota on breed characteristics. The precise correlation between the gastrointestinal tract and peripheral organs in each breed is still unclear. Investigating the metabolic network of the intestinal organ has the potential to improve animal growth performance and enhance economic benefits through the regulation of intestinal metabolites. RESULTS In this study, we identified the growth advantage of Dorper sheep and the high fat content of Tan sheep. A transcriptome study of the brain, liver, skeletal muscle, and intestinal tissues of both breeds revealed 3,750 differentially expressed genes (DEGs). The genes PPARGC1A, LPL, and PHGDH were found to be highly expressed in Doper, resulting in the up-regulation of pathways related to lipid oxidation, glycerophospholipid metabolism, and amino acid anabolism. Tan sheep highly express the BSEP, LDLR, and ACHE genes, which up-regulate the pathways involved in bile transport and cholesterol homeostasis. Hindgut content analysis identified 200 differentially accumulated metabolites (DAMs). Purines, pyrimidines, bile acids, and fatty acid substances were more abundant in Dorper sheep. Based on combined gene and metabolite analyses, we have identified glycine, serine, and threonine metabolism, tryptophan metabolism, bile secretion, cholesterol metabolism, and neuroactive ligand-receptor interaction as key factors contributing to the differences among the breeds. CONCLUSIONS This study indicates that different breeds of sheep exhibit unique breed characteristics through various physiological regulatory methods. Dorper sheep upregulate metabolic signals related to glycine, serine, and threonine, resulting in an increase in purine and pyrimidine substances. This, in turn, promotes the synthesis of amino acids and facilitates body development, resulting in a faster rate of weight gain. Tan sheep accelerate bile transport, reduce bile accumulation in the intestine, and upregulate cholesterol homeostasis signals in skeletal muscles. This promotes the accumulation of peripheral and intramuscular fat, resulting in improved meat quality. This work adopts a joint analysis method of multi-tissue transcriptome and gut metabolome, providing a successful case for analyzing the mechanisms underlying the formation of various traits.
Collapse
Affiliation(s)
- Yuhao Ma
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ganxian Cai
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jianfei Chen
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xue Yang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoying Hua
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Deping Han
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xinhai Li
- Department of Animal Science and college of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Dengzhen Feng
- Department of Animal Science and college of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xuemei Deng
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Ren S, Zhang L, Tang X, Zhao Y, Cheng Q, Speakman JR, Zhang Y. Temporal and spatial variations in body mass and thermogenic capacity associated with alterations in the gut microbiota and host transcriptome in mammalian herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167776. [PMID: 37848151 DOI: 10.1016/j.scitotenv.2023.167776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most wild animals follow Bergmann's rule and grow in body size as cold stress increases. However, the underlying thermogenic strategies and their relationship with the gut microbiota have not been comprehensively elucidated. Herein, we used the plateau pikas as a model to investigate body mass, thermogenic capacity, host transcriptome, gut microbiota and metabolites collected from seven sites ranging from 3100 to 4700 m on the Qinghai-Tibetan Plateau (QTP) in summer and winter to test the seasonal thermogenesis strategy in small herbivorous mammals. The results showed that the increase in pika body mass with altitude followed Bergmann's rule in summer and an inverted parabolic shape was observed in winter. However, physiological parameters and transcriptome profiles indicated that the thermogenic capacity of pikas increased with altitude in summer and decreased with altitude in winter. The abundance of Firmicutes declined, whereas that of Bacteroidetes significantly increased with altitude in summer. Phenylalanine, tyrosine, and proline were enriched in summer, whereas carnitine and succinate were enriched in winter. Spearman's correlation analysis revealed significant positive correlations between Prevotella, Bacteroides, Ruminococcus, Alistipes and Akkermansia and metabolites of amino acids, pika physiological parameters, and transcriptome profiles. Moreover, metabolites of amino acids further showed significant positive correlations with pika physiological parameters and transcriptome profiles. Our study highlights that the changes in body mass and thermogenic capacity with altitude distinctly differentiate small herbivorous mammals between summer and winter on the QTP, and that the gut microbiota may regulate host thermogenesis through its metabolites.
Collapse
Affiliation(s)
- Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China.
| |
Collapse
|
15
|
Li S, Li X, Wang K, Li Y, Nagaoka K, Li C. Gut microbiota intervention attenuates thermogenesis in broilers exposed to high temperature through modulation of the hypothalamic 5-HT pathway. J Anim Sci Biotechnol 2023; 14:159. [PMID: 38129919 PMCID: PMC10734199 DOI: 10.1186/s40104-023-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Broilers have a robust metabolism and high body temperature, which make them less tolerant to high-temperature (HT) environments and more susceptible to challenges from elevated temperatures. Gut microbes, functioning as symbionts within the host, possess the capacity to significantly regulate the physiological functions and environmental adaptability of the host. This study aims to investigate the effects of gut microbial intervention on the body temperature and thermogenesis of broilers at different ambient temperatures, as well as the underlying mechanism involving the "gut-brain" axis. METHODS Broilers were subjected to gut microbiota interference with or without antibiotics (control or ABX) starting at 1 day of age. At 21 day of age, they were divided into 4 groups and exposed to different environments for 7 d: The control and ABX groups at room temperature (RT, 24 ± 1 °C, 60% relative humidity (RH), 24 h/d) and the control-HT and ABX-HT groups at high temperature (HT, 32 ± 1 °C, 60% RH, 24 h/d). RESULTS : The results demonstrated that the antibiotic-induced gut microbiota intervention increased body weight and improved feed conversion in broiler chickens (P < 0.05). Under HT conditions, the microbiota intervention reduced the rectal temperature of broiler chickens (P < 0.05), inhibited the expression of avUCP and thermogenesis-related genes in breast muscle and liver (P < 0.05), and thus decreased thermogenesis capacity. Furthermore, the gut microbiota intervention blunted the hypothalamic‒pituitary‒adrenal axis and hypothalamic-pituitary-thyroid axis activation induced by HT conditions. By analyzing the cecal microbiota composition of control and ABX chickens maintained under HT conditions, we found that Alistipes was enriched in control chickens. In contrast, antibiotic-induced gut microbiota intervention resulted in a decrease in the relative abundance of Alistipes (P < 0.05). Moreover, this difference was accompanied by increased hypothalamic 5-hydroxytryptamine (5-HT) content and TPH2 expression (P < 0.05). CONCLUSIONS These findings underscore the critical role of the gut microbiota in regulating broiler thermogenesis via the gut-brain axis and suggest that the hypothalamic 5-HT pathway may be a potential mechanism by which the gut microbiota affects thermoregulation in broilers.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Bhagat NR, Chauhan P, Verma P, Mishra A, Bharti VK. High-altitude and low-altitude adapted chicken gut-microbes have different functional diversity. Sci Rep 2023; 13:20856. [PMID: 38012260 PMCID: PMC10682461 DOI: 10.1038/s41598-023-48147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Recently, there has been considerable interest in the functions of gut microbiota in broiler chickens in relation to their use as feed additives. However, the gut-microbiota of chickens reared at different altitudes are not well documented for their potential role in adapting to prevailing conditions and functional changes. In this context, the present study investigates the functional diversity of gut-microbes in high-altitude (HACh) and low-altitude adapted chickens (LACh), assessing their substrate utilization profile through Biolog Ecoplates technology. This will help in the identification of potential microbes or their synthesized metabolites, which could be beneficial for the host or industrial applications. Results revealed that among the 31 different types of studied substrates, only polymers, carbohydrates, carboxylic acids, and amine-based substrates utilization varied significantly (p < 0.05) among the chickens reared at two different altitudes where gut-microbes of LACh utilized a broad range of substrates than the HACh. Further, diversity indices (Shannon and MacIntosh) analysis in LACh samples showed significant (p < 0.05) higher richness and evenness of microbes as compared to the HACh samples. However, no significant difference was observed in the Simpson diversity index in gut microbes of lowversus high-altitude chickens. In addition, the Principal Component Analysis elucidated variation in substrate preferences of gut-microbes, where 13 and 8 carbon substrates were found to constitute PC1 and PC2, respectively, where γ-aminobutyric acid, D-glucosaminic acid, i-erythritol and tween 40 were the most relevant substrates that had a major effect on PC1, however, alpha-ketobutyric acid and glycyl-L-glutamic acid affected PC2. Hence, this study concludes that the gut-microbes of high and low-altitudes adapted chickens use different carbon substrates so that they could play a vital role in the health and immunity of an animal host based on their geographical location. Consequently, this study substantiates the difference in the substrate utilization and functional diversity of the microbial flora in chickens reared at high and low altitudes due to altitudinal changes.
Collapse
Affiliation(s)
- Neha Rani Bhagat
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Priyanka Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- School of Sciences, P. P. Savani University, NH-8, GETCO, Near Biltech, Kosamba, Surat, 394125, India
| | - Pratibha Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India.
| |
Collapse
|
17
|
Hu B, Wang J, Li Y, Ge J, Pan J, Li G, He Y, Zhong H, Wang B, Huang Y, Han S, Xing Y, He H. Gut microbiota facilitates adaptation of the plateau zokor ( Myospalax baileyi) to the plateau living environment. Front Microbiol 2023; 14:1136845. [PMID: 36910168 PMCID: PMC9998695 DOI: 10.3389/fmicb.2023.1136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota not only helps the hosts to perform many key physiological functions such as food digestion, energy harvesting and immune regulation, but also influences host ecology and facilitates adaptation of the host to extreme environments. Plateau zokors epitomize successful physiological adaptation to their living environment in the face of the harsh environment characterized by low temperature, low pressure and hypoxia in the Tibetan plateau region and high concentrations of CO2 in their burrows. Therefore, here we used a metagenomic sequencing approach to explore how gut microbiota contributed to the adaptive evolution of the plateau zokor on the Qinghai-Tibet Plateau. Our metagenomic results show that the gut microbiota of plateau zokors on the Tibetan plateau is not only enriched in a large number of species related to energy metabolism and production of short-chain fatty acids (SCFAs), but also significantly enriched the KO terms that involve carbohydrate uptake pathways, which well address energy uptake in plateau zokors while also reducing inflammatory responses due to low pressure, hypoxia and high CO2 concentrations. There was also a significant enrichment of tripeptidyl-peptidase II (TPPII) associated with antigen processing, apoptosis, DNA damage repair and cell division, which may facilitate the immune response and tissue damage repair in plateau zokors under extreme conditions. These results suggest that these gut microbiota and their metabolites together contribute to the physiological adaptation of plateau zokors, providing new insights into the contribution of the microbiome to the evolution of mammalian adaptation.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiamin Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jin Ge
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jinchao Pan
- College of Animal Sciences, Anhui University of Science and Technology, Huainan, China
| | - Gaojian Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yongcai He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Haishun Zhong
- Animal Husbandry and Veterinary Station of Xunhua, Xining, Qinghai, China
| | - Bo Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xing
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|