1
|
Ghaffar OR, Khoshnaw DM, Ahmed OR, Aziz SO, Abdollahi A, Mohammed NI, Saleh KK, Ahmad NR, Majeed MM, Muhammad SI, Osman SF, Khdir HA. Supplementing high-fiber olive pomace and multi-enzymes to broiler chicken's diet can improve health and performance. Trop Anim Health Prod 2025; 57:47. [PMID: 39891791 DOI: 10.1007/s11250-025-04298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
This study assessed the effects of high-fiber olive pomace (OP) and exogenous multi-enzymes (phytase, cellulase and xylanase) on broiler chickens' growth performance, internal organs, intestinal morphology, blood traits, serum lipid profile and health. A total of three hundred one-day-old Ross 308 chicks were randomly allocated into six treatments using a 2 × 3 factorial design involving 0 and 0.5 g/kg multi-enzymes and 0, 5, and 10% olive pomace. The diet was primarily based on corn and soybean meal. The experiment was carried out in three stages: starter, grower and finisher. The results indicated that including OP at 5% and 10% levels did not negatively impact broilers' performance (P > 0.05). However, supplementing the diet with multi-enzymes significantly increased feed consumption, body weight, and weight gain (P < 0.05). Furthermore, chickens offered with 10% OP + multi-enzymes exhibited the best performance compared to other experimental groups. The mortality rate also showed a non-significant decline of almost 5% (P > 0.05). Additionally, administration of OP and multi-enzymes or a combination of them to the broilers' diet improved serum lipid profile and liver enzyme activity (P < 0.05) and did not affect the relative weight and length of internal organs and intestinal histomorphology (P > 0.05). In conclusion, using multi-enzymes and a diet containing olive pomace could improve the serum lipid profile, liver enzyme activity, and overall health without adversely affecting broiler performance.
Collapse
Affiliation(s)
- Osama Rahman Ghaffar
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq.
| | - Dastan Mohammed Khoshnaw
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Omer Rasool Ahmed
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Sarwar Omer Aziz
- Raparin Hospital: Raparin Teaching Hospital for Paediatric Diseases and Surgery, Ranya, Sulaymaniyah, 46016, Iraq
| | - Asrin Abdollahi
- Department of Animal Science, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Nihayat Ibrahim Mohammed
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Karzan Kareem Saleh
- Raparin Hospital: Raparin Teaching Hospital for Paediatric Diseases and Surgery, Ranya, Sulaymaniyah, 46016, Iraq
| | - Niga Rzgar Ahmad
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Mzhda Mohammed Majeed
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Shiraz Ismail Muhammad
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Srwsht Farhad Osman
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Hawkar Azad Khdir
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| |
Collapse
|
2
|
Tu J, Kang M, Zhao Q, Xue C, Bi C, Dong N. Oleanolic acid improves antioxidant capacity and the abundance of Faecalibacterium prausnitzii in the intestine of broilers. Poult Sci 2024; 103:104340. [PMID: 39520757 PMCID: PMC11585868 DOI: 10.1016/j.psj.2024.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated the effect of dietary oleanolic acid (OA) addition on broiler intestinal morphology, intestinal antioxidant capacity, changes in cecum microbiota, and the relationship between microbiota and antioxidant capacity. A total of 288 Arbor Acres broilers at 1-day-old broilers were reared, and they were randomly divided into four groups. The control and experimental groups were fed the basal diet and the basal diet supplemented with 50, 100, and 150 mg/kg OA for a total of 42 d respectively. The results showed that OA does not affect the performance of broiler chickens. The OA supplementation increased the ratio between jejunum villus height and crypt depth (P < 0.05). The expression of antioxidant enzymes (GSH-PX and CAT) and antioxidant-related genes (HO-1, NQO1, Nrf2, and CAT) was significantly increased in the jejunum and cecum (P < 0.05). In addition, jejunal T-AOC activity (P < 0.05) and cecum antioxidant-related gene GPX-1 expression (P < 0.01) were significantly increased. The expression of oxidation-related genes (NOX and ROMO1) was significantly down-regulated in both jejunum and cecum (P < 0.05). The addition of 150 mg/kg of OA increased the relative abundance of potentially beneficial bacteria and Faecalibacterium prausnitzii was significantly and positively correlated with the expression levels of antioxidant-related genes. In conclusion, the addition of OA to the diet may improve the intestinal antioxidant capacity and modulate the intestinal microbiota of broilers. Moreover, OA improved intestinal antioxidant capacity by increasing the relative abundance of F. prausnitzii.
Collapse
Affiliation(s)
- Jianing Tu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mingxuan Kang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qianwen Zhao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chongpeng Bi
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Chen X, Li Y, Zheng A, Wang Z, Wei X, Li S, Purba A, Chen Z, Liu G. Dietary Replacement of Soybean Meal with Zanthoxylum bungeanum Seed Meal on Growth Performance, Blood Parameters, and Nutrient Utilization in Broiler Chickens. Animals (Basel) 2024; 14:1420. [PMID: 38791638 PMCID: PMC11117249 DOI: 10.3390/ani14101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Zanthoxylum bungeanum seed meal (ZBM), a novel plant protein raw material, has shown promising potential in enhancing the growth of broiler chickens as a substitute for soybean meal (SBM) in feed. In the artificial digestive experiment of vitro experiments, the digestibility of ZBM and SBM were assessed using the SDS-III Single Stomach Animal Biometric Digestion System. Subsequently, 180 1-day old AA chicks were divided into three groups for in vivo experiments: corn-soybean-meal-based diet (CON group); ZBM replacing 5% soybean meal in the basal diet (ZBM-1 group); ZBM replacing 10% soybean meal in the basal diet (ZBM-2 group). The experiment period lasted for 42 days. Compared to SBM, ZBM demonstrated higher crude protein content, dry matter digestibility, and extracorporeal digestible protein. Compared with the CON group, the broilers in the ZBM-2 group showed improved ADG and ADFI during the 1-21 d, 22-42 d, and 1-42 d periods (p < 0.05). Furthermore, the ZBM groups exhibited significant increases in slaughter performance compared with the CON group (p < 0.05). The substitution of ZBM for SBM also leads to a significant reduction in serum enzyme indicators (p < 0.05). Additionally, the lipoprotein and total cholesterol of the ZBM groups were significantly lower than those of the CON group (p < 0.05). Substituting SBM with ZBM significantly enhances the activity of superoxide dismutase and the content of immunoglobulin G in broiler serum, while reducing the content of malondildehyde (p < 0.05). The ZBM groups showed significantly higher utilization of dry matter, crude protein, and energy compared with the CON group (p < 0.05). In conclusion, the study confirmed that the substitution of SBM with 5-10% ZBM in broiler diets has a significant positive effect on growth, development, antioxidant capacity, immune function, and nutrient utilization. This study not only provides a theoretical foundation for the utilization of ZBM in broiler diets but also offers an effective approach for reducing reliance on soybean meal.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (X.C.); (A.Z.); (Z.W.); (X.W.); (S.L.); (A.P.); (Z.C.)
| | - Yang Li
- Beijing Dabeinong Technology Group Co., Ltd., Beijing 100194, China;
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (X.C.); (A.Z.); (Z.W.); (X.W.); (S.L.); (A.P.); (Z.C.)
| | - Zedong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (X.C.); (A.Z.); (Z.W.); (X.W.); (S.L.); (A.P.); (Z.C.)
| | - Xu Wei
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (X.C.); (A.Z.); (Z.W.); (X.W.); (S.L.); (A.P.); (Z.C.)
| | - Shuzhen Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (X.C.); (A.Z.); (Z.W.); (X.W.); (S.L.); (A.P.); (Z.C.)
| | - Adanan Purba
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (X.C.); (A.Z.); (Z.W.); (X.W.); (S.L.); (A.P.); (Z.C.)
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (X.C.); (A.Z.); (Z.W.); (X.W.); (S.L.); (A.P.); (Z.C.)
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (X.C.); (A.Z.); (Z.W.); (X.W.); (S.L.); (A.P.); (Z.C.)
| |
Collapse
|
4
|
Attia YA, Al-Sagan AA, Hussein ESOS, Olal MJ, Ebeid TA, Al-Abdullatif AA, Alhotan RA, Alyileili SR, Shehata HA, Tufarelli V. Dietary flaxseed cake influences on performance, quality, and sensory attributes of eggs, serum, and egg trace minerals of laying hens. Trop Anim Health Prod 2024; 56:50. [PMID: 38236506 DOI: 10.1007/s11250-024-03897-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Nowadays, there is a global shortage in feed supply for animal nutrition; however, there are a considerable amount of agro-industrial co- and by-products that may offer a reasonable solution. Flaxseed cake (FSC) is a by-product of flaxseed for oil extraction rich in n-3 α-linolenic acid (ALA). Thus, the dietary inclusion of FSC on laying performance, egg quality, and serum and egg trace elements (Se, Zn, and Fe) was evaluated using Hisex White hens. The hens were distributed to three equal experimental treatments and provided diets including 0%, 5%, or 10% FSC from 48 to 58 weeks of age. Findings clarified that up to 10% FSC in the laying hen diet had no detrimental effect on laying rate, egg mass, and feed utilization. It was found that FSC resulted in a valuable source of protein, energy, macro- (Ca and P), micro- (Se, Zn and Fe) elements, and essential amino acids, with arginine being the highest. Dietary FSC did not negatively influence the egg quality traits, as well as egg sensory attributes. Including 5% or 10% FSC in diet did not significantly affect serum total protein and renal function in terms of creatinine, uric acid, and uric acid-to-creatinine ratio. Different FSC levels did not influence the chemical composition of eggs and trace elements in serum and eggs. It could be concluded that FSC is a valuable feedstuff that can provide a good source of energy, protein, amino acids, and macro- and micro-elements for hens' nutrition. The inclusion of up to 10% of FSC in hens diet did not adversely influence egg laying performance, egg quality of both fresh and stored eggs, sensory attributes, and nutritional composition, as well as Se, Zn, and Fe in serum and eggs due to balanced nutrient profile of FSC.
Collapse
Affiliation(s)
- Youssef A Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
| | - Ahmed A Al-Sagan
- King Abdulaziz City for Science and Technology, 12354, Riyadh, Saudi Arabia
| | - El-Sayed O S Hussein
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Marai J Olal
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Tarek A Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, 51452, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, KafrEl-Sheikh, 33516, Egypt
| | - Abdulaziz A Al-Abdullatif
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Rashed A Alhotan
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Salem R Alyileili
- Department of Laboratory Analysis, College of Food and Agriculture Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Heba A Shehata
- Regional Center for Food and Feed, Agricultural Research and Development Center, Giza, Egypt
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area, Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Valenzano, Bari, Italy.
| |
Collapse
|
5
|
Tufarelli V, Losacco C, Tedone L, Passantino L, Tarricone S, Laudadio V, Colonna MA. Hemp seed ( Cannabis sativa L.) cake as sustainable dietary additive in slow-growing broilers: effects on performance, meat quality, oxidative stability and gut health. Vet Q 2023; 43:1-12. [PMID: 37715944 PMCID: PMC10524784 DOI: 10.1080/01652176.2023.2260448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
Hemp seed cake (HSC) (Cannabis sativa L.) is a rich source of polyunsaturated fatty acids, high-quality proteins and essential amino acids. The aim of this study was to evaluate the effects of dietary inclusion of HSC on growth performance, meat quality traits, fatty acids profile and oxidative status, and intestinal morphology in slow-growing broilers. A total of 180 male slow-growing broilers were randomly assigned to one of three dietary treatments containing different levels of HSC: 0 (HSC0), 5 (HSC5) or 10% (HSC10). Birds were slaughtered at 49 days of age: breast and thigh muscles were analysed and duodenum mucosa histomorphological features were evaluated. Regardless the level of HSC inclusion, no differences among groups were found for performance and meat quality traits. The thigh and breast fatty acid profile were significantly improved in both HSC groups, with an increase of the long chain fatty acids of n-3 series and decrease of n-6/n-3 ratio. The HSC diets lowered the MDA concentration and lipid hydroperoxides in breast meat. Histomorphometrical analysis revealed a significant increase in villus height, surface area and villus/crypt ratio, with a decrease of crypt depth, suggesting that dietary supplementation with HSC may boost intestinal health status in poultry. In conclusion, dietary HSC did not affect performance, carcass traits and meat quality, while it positively influenced the lipid profile of meat, and improved the oxidative status and gut health, thus representing a valuable and sustainable alternative ingredient in broiler diet.
Collapse
Affiliation(s)
- Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Caterina Losacco
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Tedone
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Letizia Passantino
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Simona Tarricone
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Vito Laudadio
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | | |
Collapse
|
6
|
Corrales NL, Sevillano F, Escudero R, Mateos GG, Menoyo D. Replacement of Vitamin E by an Extract from an Olive Oil By-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Growth Performance and Breast Meat Quality. Antioxidants (Basel) 2023; 12:1940. [PMID: 38001793 PMCID: PMC10669133 DOI: 10.3390/antiox12111940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The hypothesis of this experiment was that a liquid rich in hydroxytyrosol (HT) obtained from "alperujo", an olive oil by-product, could replace part of the added vitamin E (VE) as an antioxidant in poultry diets. There were five diets that differed exclusively in the substitution of supplemental VE (0 to 40 mg/kg, with differences of 10 mg/kg) by HT (30 to 0 mg/kg, with differences of 7.5 mg/kg). The basal diet was based on corn and soybean meal and provided 10 mg VE/kg. From 0 to 39 d of age, the growth performance of the birds was not affected by diet. The birds were slaughtered at 39 d of age to evaluate the quality of the breast, and malonaldehyde concentration, pH, color, and drip loss were measured. In terms of meat lipid oxidation, the combination of 22.5 mg HT/kg and 10 mg of added VE/kg equalized to a diet supplemented with 40 mg VE/kg. Meat color improved in broilers fed 7.5 mg HT/kg and 30 mg VE/kg. It is concluded that once the nutritional requirements of the birds in VE are satisfied, the dietary supplementation with the olive oil by-product rich in HT can be used as a strategy to spare VE in broiler diets.
Collapse
Affiliation(s)
- Nereida L Corrales
- Departamento Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro 2, 28040 Madrid, Spain
| | - Fernando Sevillano
- Departamento Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro 2, 28040 Madrid, Spain
| | - Rosa Escudero
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Gonzalo G Mateos
- Departamento Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro 2, 28040 Madrid, Spain
| | - David Menoyo
- Departamento Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro 2, 28040 Madrid, Spain
| |
Collapse
|
7
|
Ferlisi F, Tang J, Cappelli K, Trabalza-Marinucci M. Dietary supplementation with olive oil co-products rich in polyphenols: a novel nutraceutical approach in monogastric animal nutrition. Front Vet Sci 2023; 10:1272274. [PMID: 37901105 PMCID: PMC10611480 DOI: 10.3389/fvets.2023.1272274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
In recent years, the increased demand for agri-food products to feed livestock species has stimulated research to identify novel solutions for the valorization of natural waste, according to the modern concept of a circular economy. Numerous studies have shown the use of plant-derived and agro-industrial co-products that are sources of bioactive molecules for preparing animal feeds. Supplementation with co-products derived from the extraction of olive oil (i.e., olive pomace, olive mill wastewater, olive cake and olive leaf) in diet has been widely considered in recent decades, because these wastes are produced in high quantity and their re-use represents an innovative economic and environmental strategy. Olive oil co-products are characterized by various bioactive molecules such as polyphenols, carbohydrates, proteins, and lipids. Among them, polyphenols are the nutraceuticals most studied, showing to promote health effects in both humans and animals. Olive oil co-products and their phenolic extracts have shown many beneficial and promising effects when added to the diets of monogastric animals, by improving performance parameters and maintaining the oxidative status of meat and derived products. This review provides an update on the use of olive co-products in monogastric animal (swine, poultry and rabbit) diets and their effects on the productive performance, meat quality characteristics and gut health status.
Collapse
Affiliation(s)
- Flavia Ferlisi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
8
|
Vasilopoulou K, Papadopoulos GA, Lioliopoulou S, Pyrka I, Nenadis N, Savvidou S, Symeon G, Dotas V, Panitsidis I, Arsenos G, Giannenas I. Effects of Dietary Supplementation of a Resin-Purified Aqueous-Isopropanol Olive Leaf Extract on Meat and Liver Antioxidant Parameters in Broilers. Antioxidants (Basel) 2023; 12:1723. [PMID: 37760026 PMCID: PMC10525201 DOI: 10.3390/antiox12091723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Olive leaves are byproducts οf the agro-industrial sector and are rich in bioactive compounds with antioxidant properties. They could be supplemented in poultry diets powdered or less frequently as extracts to improve performance, health and product quality. The objective of this study was to investigate the possible beneficial effects of an aqueous isopropanol olive leaf extract-purified through filtration (250-25 µm) and a resin (XAD-4)-when supplemented in broiler chickens' diets, on meat quality parameters, focusing mainly on antioxidant parameters as there is limited published information. For this purpose, four-hundred-and-eighty-day-old broilers were randomly assigned to four dietary treatments: T1 (control: basal diet); T2 (1% olive leaf extract); T3 (2.5% olive leaf extract); T4 (positive control: 0.1% encapsulated oregano oil commercially used as feed additive). At the end of the experimental period (day 42), the birds were slaughtered, and samples from breast, thigh meat and liver were collected for antioxidant parameters evaluation. On day 1, after slaughter, in thigh meat, Malondialdehyde (MDA) was lower in T2 compared to T3, and total phenolic content (TPC) was higher in T2 compared to T3 and T4. Total antioxidant capacity (TAC) was increased in T2 and T4 breast meat compared to the control. In liver, T4 treatment resulted in higher TPC. The lack of dose-dependent effect for olive leaf extract may be attributed to the pro-oxidant effects of some bioactive compounds found in olive leaves, such as oleuropein, when supplemented at higher levels. In summary, it can be inferred that the inclusion of 1% olive leaf extract in the feed of broilers has the potential to mitigate oxidation in broiler meat and maybe enhance its quality.
Collapse
Affiliation(s)
- Konstantina Vasilopoulou
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios A. Papadopoulos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Styliani Lioliopoulou
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Pyrka
- Laboratory of Food Chemistry and Technology, School of Chemistry, 54124 Thessaloniki, Greece
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, 54124 Thessaloniki, Greece
| | - Soumela Savvidou
- Institute of Animal Science, Hellenic Agricultural Organisation-DEMETER, 58100 Giannitsa, Greece
| | - George Symeon
- Institute of Animal Science, Hellenic Agricultural Organisation-DEMETER, 58100 Giannitsa, Greece
| | - Vassilios Dotas
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Panitsidis
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Janmohammadi H, Hosseintabar-Ghasemabad B, Oliyai M, Alijani S, Gorlov IF, Slozhenkina MI, Mosolov AA, Suarez Ramirez L, Seidavi A, Laudadio V, Tufarelli V, Ragni M. Effect of Dietary Amaranth ( Amaranthus hybridus chlorostachys) Supplemented with Enzyme Blend on Egg Quality, Serum Biochemistry and Antioxidant Status in Laying Hens. Antioxidants (Basel) 2023; 12:antiox12020456. [PMID: 36830014 PMCID: PMC9952584 DOI: 10.3390/antiox12020456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
A feeding trial was performed to assess the effects of dietary raw amaranth (Amaranthus hybridus chlorostachys) grain (RAG), with or without an enzyme blend, on the productive performance, blood biochemistry, and antioxidant status in laying hens. The trial was conducted following a completely randomized design by factorial method, including five levels of RAG (0, 10, 20, 30, and 40%, respectively) and two levels of enzyme blend (0 -E and 0.025 +E %). A total of 960 White Leghorn (Hy-line W-36) laying hens (56 weeks of age) were divided into 10 groups with eight repetitions, including 12 birds. The trial period was ten weeks. Results showed that RAG levels in feed (>10%) led to a significant decrease in blood total cholesterol (TC), but they also significantly decreased feed conversion ratio (FCR) (p ˂ 0.05) as measured by feed intake (FI), hen daily production (HDP), egg weight (EW), and mass (EM), leading to overall worse productivity compared to the control group. On the contrary, the addition of the enzyme blend led to an improvement in the investigated production traits (p ˂ 0.05), with the exception of HDP. The enzyme blend was also capable of recovering productive performance when combined with low concentrations of RAG (10%) (p ˂ 0.05), and RAG × enzyme blend groups showed the lowest values of TC (p ˂ 0.05). Moreover, the interaction effects for atherogenic index (LDL/HDL) indicated a significant and promising reduction in response to the addition of RAG both in the presence and absence of the enzyme blend (p ˂ 0.05), and this additive also significantly reduced levels of egg yolk cholesterol (p ˂ 0.05). In summary, the evidence gathered in this trial showed that dietary RAG had positive effects on egg quality characteristics, leading to the production of low-cholesterol eggs, and, at the same time, it may improve the health status of laying hens. Furthermore, the addition of an enzyme blend allowed feeding up to 10% RAG in the diet, leading to an optimal balance between animal productivity and the beneficial effects of RAG.
Collapse
Affiliation(s)
- Hossein Janmohammadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | | | - Majid Oliyai
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Sadegh Alijani
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Ivan Fedorovich Gorlov
- Volga Region Research Institute of Manufacture and Processing of Meat-and-Milk Production, 400131 Volgograd, Russia
| | - Marina Ivanovna Slozhenkina
- Volga Region Research Institute of Manufacture and Processing of Meat-and-Milk Production, 400131 Volgograd, Russia
| | | | - Lourdes Suarez Ramirez
- Department of Animal Pathology, Animal Production, Bromatology and Food Technology, Veterinary Faculty, University of Las Palmas de Gran Canaria, 35412 Arucas, Spain
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht 41335-3516, Iran
| | - Vito Laudadio
- Department of Precision and Regenerative Medicine and Jonian Area, University of Bari ‘Aldo Moro’, Valenzano, 70010 Bari, Italy
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area, University of Bari ‘Aldo Moro’, Valenzano, 70010 Bari, Italy
- Correspondence:
| | - Marco Ragni
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| |
Collapse
|