1
|
Chenouf NS, Messaï CR, Carvalho I, Álvarez-Gómez T, Silva V, Zitouni A, Hakem A, Poeta P, Torres C. Serogrouping and Molecular Characterization of ESBL-Producing Avian Pathogenic Escherichia coli from Broilers and Turkeys with Colibacillosis in Algeria. Antibiotics (Basel) 2025; 14:356. [PMID: 40298547 PMCID: PMC12023931 DOI: 10.3390/antibiotics14040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Avian colibacillosis caused by avian pathogenic Escherichia coli (APEC) strains is a bacterial disease responsible for enormous economic losses in the poultry industry, due to high mortality rates in farms, antibiotic therapy costs, and seizures at slaughterhouses. The aim of this study was to characterize the serogroups and molecular features of extended spectrum β-lactamase (ESBL)-producing APEC isolates recovered from 248 liver samples of 215 broilers and 33 turkeys with colibacillosis lesions in northeast Algeria. For this, microbiological tests were carried out, according to the recommended standards: E. coli isolates were recovered using standard microbiological protocols, and identification was carried out by MALDI-TOF MS. Serogrouping was performed using a rapid agglutination slide and the antisera of three O somatic groups (O1, O2, O78). Antimicrobial susceptibility was determined by the disk diffusion method. PCR assays and sequencing were used to detect antimicrobial resistance genes, integrons, phylogrouping, and MLST. Conjugation experiments were also conducted to determine the transferability of the retrieved ESBL-encoding genes. Overall, 211 (85.1%) APEC isolates were collected (one per positive sample), and 164 (77.7%) of them were typable. The O2 and O1 serogroups were the most detected (46.1% in broiler typable isolates and 61.5% in turkey typable isolates). Seventeen APEC isolates were ESBL-producers and harbored the following genes (number of isolates): blaCTX-M-1 (14), blaCTX-M-15 (2), and blaSHV-12 (1). They belonged to phylogroups D (10 isolates), B1 (6 isolates), and B2 (1 isolate). The MLST of 13 ESBL producers revealed seven STs: ST23, ST38, ST48, ST117, ST131, ST1146, and ST5087. The ESBL-encoding genes were transferred by conjugation among 15 ESBL-producing isolates, and transconjugants acquired either the IncK or IncI1 plasmids. Concerted efforts from all poultry actors are needed to establish surveillance monitoring strategies to mitigate the spread of ESBL-producing isolates implicated in avian colibacillosis.
Collapse
Affiliation(s)
- Nadia Safia Chenouf
- Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser, Bordj Bou Arreridj 34000, Algeria; (N.S.C.); (C.R.M.)
- Laboratory for Exploration and Valorization of Steppe Ecosystems (EVES), Department of Biology, Faculty of Natural Sciences and Life, University of Djelfa, Moudjbara Road BP 3117, Djelfa 17000, Algeria
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers 16000, Algeria;
| | - Chafik Redha Messaï
- Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser, Bordj Bou Arreridj 34000, Algeria; (N.S.C.); (C.R.M.)
- Laboratory of Research Health and Animal Production, High National Veterinary School, Issad Abbes Street, Oued Smar, Algiers 16000, Algeria
| | - Isabel Carvalho
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.C.); (P.P.)
| | - Tamara Álvarez-Gómez
- Area Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain;
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.C.); (P.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers 16000, Algeria;
| | - Ahcene Hakem
- Agropastoralism Research Center of Djelfa, Djelfa 17000, Algeria;
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (I.C.); (P.P.)
- Agropastoralism Research Center of Djelfa, Djelfa 17000, Algeria;
- CECAV—Veterinary and Animal Research Centre, University of Traìs-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain;
| |
Collapse
|
2
|
Runcharoon K, Favro ME, Logue CM. The pathogenicity traits of avian pathogenic Escherichia coli O25-ST131 associated with avian colibacillosis in Georgia poultry and their genotypic and phenotypic overlap with other extraintestinal pathogenic E. coli. J Appl Microbiol 2025; 136:lxaf015. [PMID: 39814575 DOI: 10.1093/jambio/lxaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
AIMS To characterize Escherichia coli O25 ST131 (O25-ST131) isolated from Georgia poultry-a "global high-risk" clonal strain. METHODS AND RESULTS Using multiplex PCR to detect target genes in 98 isolates of avian pathogenic E. coli (APEC) O25 recovered from avians diagnosed with colibacillosis (n = 87) and healthy chicks (n = 11) in Georgia, USA. Eighty-eight isolates were classified as sequence type ST131 clade b and 56% (n = 49) belong to the phylogenetic group B2. Overall, 17% were identified as uropathogenic E. coli (UPEC)-like and 94% of the isolates formed strong to moderate biofilms. The extended-spectrum β-lactamases encoding genes, blaCTX M-15 (24%), carbapenemases encoding genes, and blaOXA48 (16%) were also detected. The isolates harbored FIB (88%), FIC (28%), A/C (14%), and FIIA (6%) plasmid replicons. Interestingly, 78% of the isolates were found to be resistant to chicken serum and 92% showed capabilities for growth in human urine. The isolates showed phenotypic resistance to several antibiotics including chloramphenicol (63%), ciprofloxacin (57%), trimethoprim-sulfamethoxazole (28%), streptomycin (17%), and cefoxitin and meropenem (14%) using the national antimicrobial resistance monitoring system panel. CONCLUSIONS Overall, our study provides evidence of the virulence of these global "high-risk" clones in Georgia poultry with some isolates showing genotypic overlap between APEC and UPEC. Also, this clone harbored several virulence genes, antimicrobial-resistant genes, and plasmids. Interestingly, the majority of APEC O25-ST131 isolates can survive and grow in both chicken serum and human urine and warrant further investigation of their potential pathogenicity for both chickens and humans.
Collapse
Affiliation(s)
- Klao Runcharoon
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Margaret E Favro
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
3
|
Jamali H, Akrami F, Bouakkaz S, Dozois CM. Prevalence of specific serogroups, antibiotic resistance and virulence factors of avian pathogenic Escherichia coli (APEC) isolated from clinical cases: A systematic review and meta-analysis. Microb Pathog 2024; 194:106843. [PMID: 39117015 DOI: 10.1016/j.micpath.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Pathogenic strains of Escherichia coli infecting poultry, commonly called avian pathogenic E. coli (APEC) present significant risks, to the health of both poultry and the general public. This systematic review aimed to examine the prevalence of APEC serotypes, sequence types (ST), phylogenetic groups, virulence factors and antibiotic resistance patterns based on 189 research papers sourced from PubMed, Web of Science, and ProQuest. Then, data were extracted from the selected studies and analyzed to assess the global distribution and characteristics of APEC strains. The metaprop codes in the Meta and Metafor packages of R as implemented in RStudio were then used to conduct meta-analysis. Among APEC strains identified from these different research reports serogroup O78 had the highest overall prevalence (16 %), followed by serogroups O2 (10 %), and O117 (8 %). The most common ST profiles were ST117 (20 %), ST140 (15 %), ST95 (12 %), and ST131 (9 %). ST117 and ST140 are known reservoirs for pathogenic E. coli in humans. Moreover, phylogenetic assessment highlighted the prevalence of phylogroups A, A1, F, D, and B2 among APEC strains indicating diversity in phylogenetic origin within poultry populations. The presence of antimicrobial resistance was notable among APEC strains against antibiotics such as tetracyclines, penicillins, and cephalosporins. This resistance may be linked to use of antimicrobials in poultry production in certain regions presenting challenges for both animal health management and human infection control. Analysis of sequences linked to adherence or virulence indicated that genes encoding adhesins (csg, fimC), iron/metal uptake (sitB, sitC, iroD) and cytotoxicity (estB, hlyF), and serum resistance (traT, iss) were highly prevalent. These factors have been reported to contribute to APEC host colonization and virulence in poultry. In summary, this overview of the characteristics of APEC highlights the pressing importance of monitoring and implementing management approaches to reduce antimicrobial resistance considering that a phylogenetic diversity of E. coli strains causes infections in both poultry and humans and represents a risk to both animal and public health. Further, determining the major conserved aspects and predominant mechanisms of virulence of APEC is critical for improving diagnostics and developing preventative measures to reduce the burden of infection caused by pathogenic E. coli in poultry and lower risks associated with foodborne transmission of E. coli to humans through poultry and poultry products.
Collapse
Affiliation(s)
- Hossein Jamali
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Fariba Akrami
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Souhaib Bouakkaz
- École de Technologie Supérieure, 1100 R. Notre Dame Ouest, Montréal, QC H3C 1K3, Canada
| | - Charles M Dozois
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
4
|
Cui J, Dong Y, Chen Q, Zhang C, He K, Hu G, He D, Yuan L. Horizontal transfer characterization of ColV plasmids in bla CTX-M-bearing avian Escherichia coli. Poult Sci 2024; 103:103631. [PMID: 38537404 PMCID: PMC11067769 DOI: 10.1016/j.psj.2024.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
Extended-spectrum-β-lactamases (ESBLs)-producing Escherichia coli conferred resistance to most β-lactams, except for carbapenems. To date, the transmission mechanism of blaCTX-M, as the most common ESBLs subtype, in E. coli has received sustained attention around the worldwide, but the research on the pathogenicity of blaCTX-M-bearing E. coli is still scarce. The aims of this study were to discern the spread characteristics of ColV (encoding colicin V) plasmids in blaCTX-M-positive E. coli. The multi-drug resistance traits, phylogroups, and ColV plasmid profilings were screened in 76 blaCTX-M-positive E. coli. Thereafter, the genetic profiles of E. coli G12 and GZM7 were determined by whole genome sequencing, conjugation and S1-pulsed-field gel electrophoresis. The median lethal dose was analyzed in E. coli G12 and TG12A, the ColV-plasmid transconjugant of G12. Of all 76 blaCTX-M-bearing E. coli, 67.11% exhibited resistance to at least 2 drugs in addition to ceftiofur, 14.47% carried ColV-positive plasmids, and 53.95% were phylogroup C. Further studies demonstrated that the blaCTX-M-bearing E. coli G12 was assigned to the predominant lineage O78:H4-ST117 of phylogroup G. In addition, its ColV-positive plasmid simultaneously carried multiple resistance genes, and could be independently transferred to confer partial pathogenicity on its host by plasmid mating. E. coli GZM7 was O53:H9-ST23 of phylogroup C, which belonged to another representative lineage of APEC (avian pathogenic E. coli). Its ColV-positive plasmid could complete conjugation with the help of the other coexisting-resistance conjugative plasmid, although it failed to transfer alone. Our findings highlight the flexibly horizontal transfer of ColV plasmids along with multidrug-resistant genes among blaCTX-M-bearing E. coli poses a threat to poultry health and food safety, which contributes to elucidate the concept of "One Health" and deserves particular concern.
Collapse
Affiliation(s)
- Junling Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yanbin Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiuru Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Chaojun Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Kun He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
5
|
Aworh MK, Thakur S, Gensler C, Harrell E, Harden L, Fedorka-Cray PJ, Jacob M. Characteristics of antimicrobial resistance in Escherichia coli isolated from retail meat products in North Carolina. PLoS One 2024; 19:e0294099. [PMID: 38180979 PMCID: PMC10769054 DOI: 10.1371/journal.pone.0294099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Escherichia coli is commonly used as an indicator for antimicrobial resistance (AMR) in food, animal, environment, and human surveillance systems. Our study aimed to characterize AMR in E. coli isolated from retail meat purchased from grocery stores in North Carolina, USA as part of the National Antimicrobial Resistance Monitoring System (NARMS). MATERIALS AND METHODS Retail chicken (breast, n = 96; giblets, n = 24), turkey (n = 96), and pork (n = 96) products were purchased monthly from different counties in North Carolina during 2022. Label claims on packages regarding antibiotic use were recorded at collection. E. coli was isolated from meat samples using culture-based methods and isolates were characterized for antimicrobial resistance using whole genome sequencing. Multi-locus sequence typing, phylogroups, and a single nucleotide polymorphism (SNP)-based maximum-likelihood phylogenic tree was generated. Data were analyzed statistically to determine differences between antibiotic use claims and meat type. RESULTS Of 312 retail meat samples, 138 (44.2%) were positive for E. coli, with turkey (78/138; 56.5%) demonstrating the highest prevalence. Prevalence was lower in chicken (41/138; 29.7%) and pork (19/138;13.8%). Quality sequence data was available from 84.8% (117/138) of the E. coli isolates, which included 72 (61.5%) from turkey, 27 (23.1%) from chicken breast, and 18 (15.4%) from pork. Genes associated with AMR were detected in 77.8% (91/117) of the isolates and 35.9% (42/117) were defined as multidrug resistant (MDR: being resistant to ≥3 distinct classes of antimicrobials). Commonly observed AMR genes included tetB (35%), tetA (24.8%), aph(3'')-lb (24.8%), and blaTEM-1 (20.5%), the majority of which originated from turkey isolates. Antibiotics use claims had no statistical effect on MDR E. coli isolates from the different meat types (X2 = 2.21, p = 0.33). MDR was observed in isolates from meat products with labels indicating "no claims" (n = 29; 69%), "no antibiotics ever" (n = 9; 21.4%), and "organic" (n = 4; 9.5%). Thirty-four different replicon types were observed. AMR genes were carried on plasmids in 17 E. coli isolates, of which 15 (88.2%) were from turkey and two (11.8%) from chicken. Known sequence types (STs) were described for 81 E. coli isolates, with ST117 (8.5%), ST297 (5.1%), and ST58 (3.4%) being the most prevalent across retail meat types. The most prevalent phylogroups were B1 (29.1%) and A (28.2%). Five clonal patterns were detected among isolates. CONCLUSIONS E. coli prevalence and the presence of AMR and MDR were highest in turkey retail meat. The lack of an association between MDR E. coli in retail meat and antibiotic use claim, including those with no indication of antimicrobial use, suggests that additional research is required to understand the origin of resistance. The presence of ST117, an emerging human pathogen, warrants further surveillance. The isolates were distinctly diverse suggesting an instability in population dynamics.
Collapse
Affiliation(s)
- Mabel Kamweli Aworh
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Catherine Gensler
- Department of Agricultural and Human Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Erin Harrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lyndy Harden
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Paula J. Fedorka-Cray
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Megan Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|