1
|
Chen J, Yang F, Lai L, Li H, Pan C, Bao X, Lin W, Lin R. 4D-DIA-Based Quantitative Proteomic Analysis Reveals the Involvement of TRPV2 Protein in Duck Tembusu Virus Replication. Viruses 2024; 16:1831. [PMID: 39772141 PMCID: PMC11680370 DOI: 10.3390/v16121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Duck Tembusu virus (DTMUV), a novel positive-sense RNA virus, has caused significant economic losses in the poultry industry of Eastern and Southeast Asia since its outbreak in 2010. Furthermore, the rapid transmission and potential zoonotic nature of DTMUV pose a threat to public health safety. In this study, a 4D-DIA quantitative proteomics approach was employed to identify differentially expressed cellular proteins in DTMUV-infected DF-1 cells, which are routinely used for virus isolation and identification for DTMUV, as well as the development of vaccines against other poultry viruses. One hundred fifty-seven differentially expressed cellular proteins were identified, including 84 upregulated and 73 downregulated proteins at 48 h post-infection, among which CXCL8, DDX3X, and TRPV2 may play crucial roles in viral propagation. Notably, for the upregulated protein TRPV2, the DTMUV replication was inhibited in TRPV2-low-expressing DF-1 cells. In summary, our research represents the application of 4D-DIA quantitative proteomics to analyze the proteomic landscape of DTMUV-infected poultry cells. These findings may provide valuable insights into understanding the interaction mechanism between DTMUV and poultry cells, as well as the identification of disease-resistant host factors in poultry breeding research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ruiyi Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (F.Y.); (L.L.); (H.L.); (C.P.); (X.B.); (W.L.)
| |
Collapse
|
2
|
Wang L, Xue Z, Tian Y, Zeng W, Zhang T, Lu H. A single-cell transcriptome atlas of Lueyang black-bone chicken skin. Poult Sci 2024; 103:103513. [PMID: 38350389 PMCID: PMC10875617 DOI: 10.1016/j.psj.2024.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
As the largest organ of the body, the skin participates in various physiological activities, such as barrier function, sensory function, and temperature regulation, thereby maintaining the balance between the body and the natural environment. To date, compositional and transcriptional profiles in chicken skin cells have not been reported. Here, we report detailed transcriptome analyses of cell populations present in the skin of a black-feather chicken and a white-feather chicken using single-cell RNA sequencing (scRNA-seq). By analyzing cluster-specific gene expression profiles, we identified 12 cell clusters, and their corresponding cell types were also characterized. Subsequently, we characterized the subpopulations of keratinocytes, myocytes, mesenchymal cells, fibroblasts, and melanocytes. It is worth noting that we have identified a subpopulation of keratinocytes involved in pigment granule capture and a subpopulation of melanocytes involved in pigment granule deposition, both of which have a higher cell abundance in black-feather chicken compared to white-feather chicken. Meanwhile, we also compared the cellular heterogeneity features of Lueyang black-bone chicken skin with different feather colors. In addition, we also screened out 12 genes those could be potential markers of melanocytes. Finally, we validated the specific expression of SGK1, WNT5A, CTSC, TYR, and LAPTM5 in black-feather chicken, which may be the key candidate genes determining the feather color differentiation of Lueyang black-bone chicken. In summary, this study first revealed the transcriptome characteristics of chicken skin cells via scRNA-seq technology. These datasets provide valuable information for the study of avian skin characteristics and have important implications for future poultry breeding.
Collapse
Affiliation(s)
- Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, 723001 Hanzhong, China
| | - Zhen Xue
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
| | - Yingmin Tian
- School of Mathematics and Computer Science, Shaanxi University of Technology, 723001 Hanzhong, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, 723001 Hanzhong, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 723001 Hanzhong, China
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, 723001 Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, 723001 Hanzhong, China
| |
Collapse
|
3
|
Meng Z, Wang Y, Kong X, Cen M, Duan Z. Chicken speckle-type POZ protein (SPOP) negatively regulates MyD88/NF-κB signaling pathway mediated proinflammatory cytokine production to promote the replication of Newcastle disease virus. Poult Sci 2024; 103:103461. [PMID: 38290339 PMCID: PMC10844869 DOI: 10.1016/j.psj.2024.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The speckle-type POZ protein (SPOP) is demonstrated to be a specific adaptor of the cullin-RING-based E3 ubiquitin ligase complex that participates in multiple cellular processes. Up to now, SPOP involved in inflammatory response has attracted more attention, but the association of SPOP with animal virus infection is scarcely reported. In this study, chicken MyD88 (chMyD88), an innate immunity-associated protein, was screened to be an interacting partner of chSPOP using co-immunoprecipitation (Co-IP) combined with liquid chromatography-tandem mass spectrometry methods. This interaction was further confirmed by fluorescence co-localization, Co-IP, and pull-down assays. It was interesting that exogenous recombinant protein HA-chSPOP or endogenous chSPOP alone was mainly located in the nucleus but was translocated to the cytoplasm upon co-expression with chMyD88 or lipopolysaccharide stimulation. In addition, chSPOP reduced chMyD88 expression by ubiquitination in a dose-dependent manner, and the regulation of NF-κB activity by chSPOP was dependent solely on chMyD88. Importantly, chSPOP played a negative regulatory role in the MyD88/NF-κB signaling pathway and the production of proinflammatory cytokines. Moreover, we found that velogenic Newcastle disease virus (NDV) infection changed the subcellular localization of chSPOP and the expression patterns of chSPOP and chMyD88, and overexpression of chSPOP decreased the production of proinflammatory cytokines to enhance velogenic and lentogenic NDV replication, while siRNA-mediated chSPOP knockdown obtained the opposite results, thereby indicating that chSPOP negatively regulated MyD88/NF-κB signaling pathway mediated proinflammatory cytokine production to promote NDV replication. These findings highlight the important role of the SPOP/MyD88/NF-κB signaling pathway in NDV replication and may provide insightful information about NDV pathogenesis.
Collapse
Affiliation(s)
- Zhongming Meng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yanbi Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xianya Kong
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Mona Cen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|