1
|
Chen C, Zhu C, Chen S, Chen Z, Fu H, Chen Y, Zhang M, Zhang W, Huang Y, Cheng L, Wan C. Specific detection of pigeon parvovirus with TaqMan real-time PCR technology. Poult Sci 2025; 104:104541. [PMID: 39603190 PMCID: PMC11635642 DOI: 10.1016/j.psj.2024.104541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The viruses of the Parvoviridae family can infect both vertebrate and invertebrate animals. Recently, pigeon parvovirus (PiPV) was detected in the feces of wild urban pigeons. Owing to no specific detection platform for PiPV, studies on the epidemiology of PiPV are still a research gap. To achieve this goal, in this study, a TaqMan-based fluorescence quantitative PCR (TaqMan‒PCR) technique was established. The specific primers and probes used were designed on the basis of the NS gene characterization of PiPV downloaded from GenBank. After optimization, the established TaqMan‒PCR assay provides a sensitive, accurate, reliable and cost-effective platform for PiPV detection. We found that both YDPS and healthy birds can be found to have PiPV infection through field sample investigations, and we also investigated the presence of PiPV in Fujian, mainland China. Owing to the failure to propagate PiPV in embryos and cells, knowledge of PiPV replication mechanisms in birds still needs further study. In conclusion, a TaqMan-based fluorescence quantitative PCR method was developed, with the advantages of sensitivity, specificity, and reproducibility. This method can be used for further epidemiological monitoring of PiPV infection.
Collapse
Affiliation(s)
- Cuiteng Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Disease Control and Prevention, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Chunhua Zhu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Disease Control and Prevention, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Shuyu Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Disease Control and Prevention, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Disease Control and Prevention, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Huanru Fu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Disease Control and Prevention, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - YuYi Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Disease Control and Prevention, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Mengyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Disease Control and Prevention, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenyu Zhang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Disease Control and Prevention, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Disease Control and Prevention, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Longfei Cheng
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Disease Control and Prevention, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Disease Control and Prevention, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
2
|
Chen S, Chen Y, Zhang M, Zhang W, Fu H, Huang Y, Cheng L, Wan C. Specific detection of duck adeno-associated virus using a TaqMan-based real-time PCR assay. Front Vet Sci 2024; 11:1483990. [PMID: 39606664 PMCID: PMC11598926 DOI: 10.3389/fvets.2024.1483990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Duck adeno-associated Virus (DAAV) is a novel pathogen that was recently discovered in ducks. To establish a molecular detection assay for DAAV for further epidemiological investigation and pathogenic mechanism. Here, we designed specific primers and probes according to the sequence characteristics of the newly discovered DAAV and then established a TaqMan real-time PCR method (TaqMan-qPCR) for the detection of DAAV. Our data showed that the established TaqMan-qPCR for detecting DAAV had high sensitivity, with the lowest detection limit of 29.1 copies/μL. No cross reaction was found with duck circovirus (DuCV), H9N2 subtype avian influenza virus (AIV), avian Tembusu virus (ATmV). duck hepatitis A virus 1 and 3 (DHAV-1 and DHAV-3), duck adenovirus A (DAdV-A), duck adenovirus 3 (DAdV-3), or duck enteritis virus (DEV). The repeatability was excellent, with the coefficients of variation of repeated intragroup and intergroup tests ranging from 0.12-0.21% and 0.62-1.42%, respectively. Seventy-eight clinical samples collected from diseased or deceased ducklings were tested. The results showed that the DAAV positive rate was 21.79%, and a triple infection (DAAV+MDPV+GPV) was found. These data provide technical support for further molecular epidemiological surveillance and pathogenic mechanism studies of DAAV infection.
Collapse
Affiliation(s)
- Shuyu Chen
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - YuYi Chen
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengyan Zhang
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenyu Zhang
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huanru Fu
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Huang
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
| | - Longfei Cheng
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
| | - Chunhe Wan
- Fujian Key Laboratory for Avian Diseases Control and Prevention, Fujian Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Diseases Control Technology Development Centre, Fuzhou, China
| |
Collapse
|
3
|
Chen C, Zhu C, Chen Z, Cai G, Lin L, Zhang S, Jiang B, Miao Z, Fu G, Huang Y, Wan C. Rapid detection of pigeon adenovirus 2 using a TaqMan real-time PCR assay. Poult Sci 2024; 103:103848. [PMID: 38843610 PMCID: PMC11216009 DOI: 10.1016/j.psj.2024.103848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/24/2024] Open
Abstract
Pigeons infected with aviadenoviruses have been found worldwide. Recently, pigeon adenovirus 2 (PiAdV-2) has been widely distributed in racing pigeons in Germany. However, the epidemiology of this virus remains unclear due to the lack of a specific detection platform for PiAdV-2. In this study, we first detected PiAdV-2 positivity in racing pigeons (designated FJ21125 and FJ21128, which share 100% nucleotide identity with each other based on the fiber 2 gene) in Fujian, Southeast China. These genes shared 99.8% nucleotide identity with PiAdV-2 (GenBank No. NC_031501) but only 54.1% nucleotide identity with PiAdV-1 (GenBank No. NC024474). Then, the TaqMan-qPCR assay for the detection of PiAdV-2 was established based on fiber 2 gene characterization. The established assay had a correlation coefficient of 1.00, with an amplification efficiency of 99.0%. The minimum detection limit was 34.6 copies/μL. Only PiAdV-2 exhibited a positive fluorescent signal, and no signal was detected for other pathogens (including PiCV, FAdV-4, FAdV-8a, EDSV, PPMV-1, RVA and PiHV). The assay has good reproducibility, with a coefficient of variation less than 2.42% both intragroup and intergroup. The distributions of PiAdV-2 in fecal samples from YPDS (35 samples) and healthy (43 samples) racing pigeons from different geographical areas were investigated and were 37.14% (YPDS) and 20.93% (healthy), respectively. In summary, we developed a TaqMan-qPCR platform for the detection of PiAdV-2 infection with high sensitivity, specificity, and reproducibility. We confirmed the presence of PiAdV-2 in China, and our data suggested that there is no indication of a correlation between YPDS and PiAdV-2. This study provides more information on the pathogenesis mechanism and epidemiological surveillance of PiAdV-2.
Collapse
Affiliation(s)
- Cuiteng Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunhua Zhu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Guozhang Cai
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Lin Lin
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Shizhong Zhang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Bin Jiang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhongwei Miao
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
4
|
Łukaszuk E, Dziewulska D, Stenzel T. Recombinant Viruses from the Picornaviridae Family Occurring in Racing Pigeons. Viruses 2024; 16:917. [PMID: 38932208 PMCID: PMC11209253 DOI: 10.3390/v16060917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses from Picornaviridae family are known pathogens of poultry, although the information on their occurrence and pathogenicity in pigeons is scarce. In this research, efforts are made to broaden the knowledge on Megrivirus B and Pigeon picornavirus B prevalence, phylogenetic relationship with other avian picornaviruses and their possible connection with enteric disease in racing pigeons. As a result of Oxford Nanopore Sequencing, five Megrivirus and two pigeon picornavirus B-like genome sequences were recovered, among which three recombinant strains were detected. The recombinant fragments represented an average of 10.9% and 25.5% of the genome length of the Pigeon picornavirus B and Megrivirus B reference strains, respectively. The phylogenetic analysis revealed that pigeons are carriers of species-specific picornaviruses. TaqMan qPCR assays revealed 7.8% and 19.0% prevalence of Megrivirus B and 32.2% and 39.7% prevalence of Pigeon picornavirus B in the group of pigeons exhibiting signs of enteropathy and in the group of asymptomatic pigeons, respectively. In turn, digital droplet PCR showed a considerably higher number of genome copies of both viruses in sick than in asymptomatic pigeons. The results of quantitative analysis leave the role of picornaviruses in enteropathies of pigeons unclear.
Collapse
Affiliation(s)
| | | | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.Ł.); (D.D.)
| |
Collapse
|
5
|
Fu H, Chen S, Zhang J, Su J, Miao Z, Huang Y, Wan C. Rapid detection of goose megrivirus using TaqMan real-time PCR technology. Poult Sci 2024; 103:103611. [PMID: 38471226 PMCID: PMC11067730 DOI: 10.1016/j.psj.2024.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to develop an efficient and accurate platform for the detection of the newly identified goose megrivirus (GoMV). To achieve this goal, we developed a TaqMan real-time PCR technology for the rapid detection and identification of GoMV. Our data showed that the established TaqMan real-time PCR assay had high sensitivity, with the lowest detection limit of 67.3 copies/μL. No positive signal can be observed from other goose origin viruses (including AIV, GPV, GoCV, GHPyV, and GoAstV), with strong specificity. The coefficients of variation of repeated intragroup and intergroup tests were all less than 1.5%, with excellent repeatability. Clinical sample investigation data from domestic Minbei White geese firstly provided evidence that GoMV can be transmitted both horizontally and vertically. In conclusion, since the TaqMan real-time PCR method has high sensitivity, specificity, and reproducibility, it can be a useful candidate tool for GoMV epidemiological investigation.
Collapse
Affiliation(s)
- Huanru Fu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyu Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinpeng Zhang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinbo Su
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongwei Miao
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
6
|
Fu H, Zhao M, Chen S, Huang Y, Wan C. Simultaneous detection and differentiation of DuCV-1 and DuCV-2 by high-resolution melting analysis. Poult Sci 2024; 103:103566. [PMID: 38417341 PMCID: PMC10907865 DOI: 10.1016/j.psj.2024.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Birds infected with duck circovirus (DuCV) can potentially cause immunosuppression by damaging lymphoid tissues, causing great losses in the duck breeding industry. Duck circovirus can be divided into two genotypes (DuCV-1 and DuCV-2), but simultaneous detection and differentiation of DuCV-1 and DuCV-2 by high-resolution melting (HRM) analysis is still lacking. Here, we designed specific primers according to the sequence characteristics of the newly identified ORF3 gene and then established a PCR-HRM method for the simultaneous detection and differentiation of DuCV-1 and DuCV-2 via high-resolution melting analysis. Our data showed that the established PCR-HRM assay had the advantages of specificity, with the lowest detection limits of 61.9 copies/μL (for DuCV-1) and 60.6 copies/μL (for DuCV-2). The melting curve of the PCR-HRM results indicated that the amplification product was specific, with no cross-reaction with common waterfowl origin pathogens and a low coefficient of variation less than 1.50% in both intra-batch and inter-batch repetitions, indicating the advantages of repeatability. We found that the percentage of DuCV-2-positive ducks was higher than that of DuCV-1-positive ducks, with 8.62% rate of DuCV-1 and DuCV-2 coinfection. In addition, we found DuCV-2-positive in geese firstly. In conclusion, this study provides a candidate PCR-HRM assay for the detection and accurate differentiation of DuCV-1 and DuCV-2 infection, which will help us for further epidemiological surveillance of DuCVs.
Collapse
Affiliation(s)
- Huanru Fu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Zhao
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyu Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|