1
|
Rzhepakovsky I, Piskov S, Avanesyan S, Kurchenko V, Shakhbanov M, Sizonenko M, Timchenko L, Kovaleva I, Özbek HN, Gogus F, Poklar Ulrih N, Nagdalian A. Analysis of bioactive compounds of hen egg components at the first half of incubation. J Food Sci 2024; 89:8784-8803. [PMID: 39656750 DOI: 10.1111/1750-3841.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
A comparative analysis of mass-volume characteristics of structural and morphological components of hen eggs before incubation and on the fifth (HH25-HH27) and 10th (HH36) days of incubation was carried out. During incubation, egg weight decreased by 9.25% (10 days), mainly due to a decrease in albumen weight (35.8%). The ratio of lipid-soluble fraction (LSF) and water-soluble fraction (WSF) in the mixed components and yolk did not change significantly. The total amount of solids in the mixed substances practically does not change during incubation. Antiradical activity of substances increased significantly by more than three times on the fifth day and additionally by 38.6% at the 10th day in relation to the fifth day. Total antioxidant activity increased by 18.9% on the fifth day and by 24.3% on the 10th day, compared to eggs before incubation. Transformation of the main components of WSF and LSF of albumin, yolk, and chicken embryo (CE) was studied using high-performance liquid chromatography and gas chromatography with mass spectrometry. On the 10th day, an increase in the number of high-molecular proteins is recorded, which indicates the activation of enzymatic processes of transformation of the main albumen proteins into proteins of organs and tissues of CE. This may cause an increase in the biological activity of substances. It was found that in conditions of in vitro digestion, antiradical activity increases by two times, anti-inflammatory activity increases by 2.4 times, and an angiotensin-converting enzyme inhibitory effect occurs in the mixed components of a 10-day incubation egg.
Collapse
Affiliation(s)
- Igor Rzhepakovsky
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Sergei Piskov
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Svetlana Avanesyan
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Vladimir Kurchenko
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
- Research Laboratory of Applied Biology Problems, Belarusian State University, Minsk, Belarus
| | - Magomed Shakhbanov
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Marina Sizonenko
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Lyudmila Timchenko
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Irina Kovaleva
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Hatice Neval Özbek
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, Gaziantep, Turkey
| | - Fahrettin Gogus
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, Gaziantep, Turkey
| | | | - Andrey Nagdalian
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| |
Collapse
|
2
|
Doyle SE, Pannella M, Onofrillo C, Bellotti C, Di Bella C, O’Connell CD, Pirogova E, Lucarelli E, Duchi S. NEST3D printed bone-mimicking scaffolds: assessment of the effect of geometrical design on stiffness and angiogenic potential. Front Cell Dev Biol 2024; 12:1353154. [PMID: 38516128 PMCID: PMC10955058 DOI: 10.3389/fcell.2024.1353154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Tissue-engineered implants for bone regeneration require consideration regarding their mineralization and vascularization capacity. Different geometries, such as biomimetic designs and lattices, can influence the mechanical properties and the vascularization capacity of bone-mimicking implants. Negative Embodied Sacrificial Template 3D (NEST3D) printing is a versatile technique across a wide range of materials that enables the production of bone-mimicking scaffolds. In this study, different scaffold motifs (logpile, Voronoi, and trabecular bone) were fabricated via NEST3D printing in polycaprolactone to determine the effect of geometrical design on stiffness (10.44 ± 6.71, 12.61 ± 5.71, and 25.93 ± 4.16 MPa, respectively) and vascularization. The same designs, in a polycaprolactone scaffold only, or when combined with gelatin methacryloyl, were then assessed for their ability to allow the infiltration of blood vessels in a chick chorioallantoic membrane (CAM) assay, a cost-effective and time-efficient in ovo assay to assess vascularization. Our findings showed that gelatin methacrylolyl alone did not allow new chorioallantoic membrane tissue or blood vessels to infiltrate within its structure. However, polycaprolactone on its own or when combined with gelatin methacrylolyl allowed tissue and vessel infiltration in all scaffold designs. The trabecular bone design showed the greatest mineralized matrix production over the three designs tested. This reinforces our hypothesis that both biomaterial choice and scaffold motifs are crucial components for a bone-mimicking scaffold.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
3
|
Wlaźlak S, Brzycka Z, Ragus W, Banaszak M, Grabowicz M. Quality characteristics, lysozyme activity, and albumen viscosity of fresh hatching duck eggs after a week's storage at various temperatures. Sci Rep 2024; 14:5616. [PMID: 38454129 PMCID: PMC10920898 DOI: 10.1038/s41598-024-56351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
The study aimed to analyze the qualitative features of Cherry Valley duck' hatching eggs during storage at different temperatures. Eggs were divided into 3 equal groups with 30 eggs each: fresh egg and stored at 7 °C and 17 °C within one week. Qualitative analyses of duck eggs were carried out, considering the morphological composition, physicochemical characteristics, lysozyme activity, and albumen viscosity. The highest weight of yolk and its percentage was found in the 17 °C group. The weight and percentage of albumen were significantly the highest in the group of fresh eggs. Higher egg weight loss was observed in the group stored at higher temperatures. Higher thick albumen height and Haugh units were found in fresh eggs and eggs stored at 7 °C. Different temperatures of egg storage did not affect lysozyme activity in thick and thin albumen. Stored eggs were characterized by lower albumen viscosity only at a shear rate of 10 rpm. The higher viscosity of thick albumen compared to thin ones was demonstrated at 10 and 20 rpm shear rates. The presented research results indicate a large diversity of selected qualitative indicators of hatching duck eggs, which may affect their storage and suitability for incubation.
Collapse
Affiliation(s)
- Sebastian Wlaźlak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Zuzanna Brzycka
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Weronika Ragus
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Mirosław Banaszak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Małgorzata Grabowicz
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|