1
|
Zhang B, Zhou N, Zhang Z, Wang R, Chen L, Zheng X, Feng W. Study on the Neuroprotective Effects of Eight Iridoid Components Using Cell Metabolomics. Molecules 2024; 29:1497. [PMID: 38611777 PMCID: PMC11013420 DOI: 10.3390/molecules29071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Iridoid components have been reported to have significant neuroprotective effects. However, it is not yet clear whether the efficacy and mechanisms of iridoid components with similar structures are also similar. This study aimed to compare the neuroprotective effects and mechanisms of eight iridoid components (catalpol (CAT), genipin (GE), geniposide (GEN), geniposidic acid (GPA), aucubin (AU), ajugol (AJU), rehmannioside C (RC), and rehmannioside D (RD)) based on corticosterone (CORT)-induced injury in PC12 cells. PC12 cells were randomly divided into a normal control group (NC), model group (M), positive drug group (FLX), and eight iridoid administration groups. Firstly, PC12 cells were induced with CORT to simulate neuronal injury. Then, the MTT method and flow cytometry were applied to evaluate the protective effects of eight iridoid components on PC12 cell damage. Thirdly, a cell metabolomics study based on ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was performed to explore changes in relevant biomarkers and metabolic pathways following the intervention of administration. The MTT assay and flow cytometry analysis showed that the eight iridoid components can improve cell viability, inhibit cell apoptosis, reduce intracellular ROS levels, and elevate MMP levels. In the PCA score plots, the sample points of the treatment groups showed a trend towards approaching the NC group. Among them, AU, AJU, and RC had a weaker effect. There were 38 metabolites (19 metabolites each in positive and negative ion modes, respectively) identified as potential biomarkers during the experiment, among which 23 metabolites were common biomarkers of the eight iridoid groups. Pathway enrichment analysis revealed that the eight iridoid components regulated the metabolism mainly in relation to D-glutamine and D-glutamate metabolism, arginine biosynthesis, the TCA cycle, purine metabolism, and glutathione metabolism. In conclusion, the eight iridoid components could reverse an imbalanced metabolic state by regulating amino acid neurotransmitters, interfering with amino acid metabolism and energy metabolism, and harmonizing the level of oxidized substances to exhibit neuroprotective effects.
Collapse
Affiliation(s)
- Bingxian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Ruifeng Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Long Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou 450046, China
| |
Collapse
|
2
|
Liu X, Han Y, Zhou S, Tian J, Qin X, Ji C, Zhao W, Chen A. Serum metabolomic responses to aerobic exercise in rats under chronic unpredictable mild stress. Sci Rep 2022; 12:4888. [PMID: 35318439 PMCID: PMC8941184 DOI: 10.1038/s41598-022-09102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
This study analyzed the effects of aerobic exercise on endogenous serum metabolites in response to chronic unpredictable mild stress (CUMS) using a rat model, aiming to identify the metabolic regulatory pathways involved in the antidepressant effect resulted from a 28-day treadmill aerobic exercise intervention. The animals were randomly divided into four groups (n = 8): normal control, normal with aerobic exercise, CUMS control, and CUMS with aerobic exercise. Body weight, sucrose preference and open field tests were performed weekly during the intervention period for changes in depressant symptoms. Serum metabolic profiles obtained by using the LC-MS/MS metabolomics were analyzed to explore the regulatory mechanism for the effect of the aerobic exercise on depression. Behavior tests showed that the aerobic exercise resulted in a significant improvement in depression-like behavior in the CUMS rats. A total of 21 differential metabolites were identified as being associated with depression in serum metabolic profile, of which the aerobic exercise significantly modulated 15, mainly related to amino acid metabolism and energy metabolism. Collectively, this is the first study that LC-MS/MS techniques were used to reveal the modulatory effects of aerobic exercise on the serum metabolic profile of depressed rats and the findings further enriched our understanding of potential mechanisms of aerobic exercise interventions on depression.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Yumei Han
- School of Physical Education, Shanxi University, Taiyuan, China.
- Institute of Biomedicine and Health, Shanxi University, Taiyuan, China.
| | - Shi Zhou
- Discipline of Sport and Exercise Science, Faculty of Health, Southern Cross University, Lismore, Australia
| | - Junsheng Tian
- Institute of Biomedicine and Health, Shanxi University, Taiyuan, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Institute of Biomedicine and Health, Shanxi University, Taiyuan, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Cui Ji
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Weidi Zhao
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Anping Chen
- School of Physical Education, Shanxi University, Taiyuan, China.
| |
Collapse
|
3
|
Bhattacharjee A, Prajapati SK, Krishnamurthy S. Supplementation of taurine improves ionic homeostasis and mitochondrial function in the rats exhibiting post-traumatic stress disorder-like symptoms. Eur J Pharmacol 2021; 908:174361. [PMID: 34297965 DOI: 10.1016/j.ejphar.2021.174361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE Current pharmacotherapy for post-traumatic stress disorder (PTSD) is limited to few antidepressants. Mitochondrial dysfunction is observed in PTSD, along with altered potassium homeostasis. Nutritional supplementation of taurine can improve ionic homeostasis and thereby treat PTSD-like symptoms in rats. AIM The purpose is to study the pharmacological effect of taurine in stress re-stress-induced PTSD in rats. METHODS As per protocol, animals were restrained for 2 h then exposed to footshock (FS) (2 mA/10 s) followed by halothane-induced anesthesia. Behavioral assessments such as elevated plus maze (EPM) and Y-maze tests were performed on days 2, 8, and 32 of experimental protocol after re-stress. In addition, daily oral administration of taurine (100, 200, and 300 mg/kg) and paroxetine (PAX) (10 mg/kg) was done from D-8 to D-32 followed by re-stress. The plasma concentration of taurine, corticosterone, and potassium was measured on Day-32 along with mitochondrial function in discrete brain regions. RESULTS Sub-chronic administration of taurine in high and medium doses significantly ameliorated PTSD-like symptoms such as hyperarousal, anxiety, and improved spatial recognition memory. Taurine in all doses restored the plasma concentration of corticosterone and potassium. SRS-induced alterations in mitochondrial bioenergetics, complex enzyme activities, and reduced mitochondrial membrane potential in different brain regions were ameliorated by taurine. CONCLUSION Nutritional supplementation of taurine improves potassium ionic homeostasis, mitochondrial function, and attenuated PTSD-like symptoms in SRS subjected rats.
Collapse
Affiliation(s)
- Anindita Bhattacharjee
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India.
| |
Collapse
|
4
|
Mahootchi E, Raasakka A, Luan W, Muruganandam G, Loris R, Haavik J, Kursula P. Structure and substrate specificity determinants of the taurine biosynthetic enzyme cysteine sulphinic acid decarboxylase. J Struct Biol 2020; 213:107674. [PMID: 33253877 DOI: 10.1016/j.jsb.2020.107674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 02/03/2023]
Abstract
Pyridoxal 5́-phosphate (PLP) is an important cofactor for amino acid decarboxylases with many biological functions, including the synthesis of signalling molecules, such as serotonin, dopamine, histamine, γ-aminobutyric acid, and taurine. Taurine is an abundant amino acid with multiple physiological functions, including osmoregulation, pH regulation, antioxidative protection, and neuromodulation. In mammalian tissues, taurine is mainly produced by decarboxylation of cysteine sulphinic acid to hypotaurine, catalysed by the PLP-dependent cysteine sulphinic acid decarboxylase (CSAD), followed by oxidation of the product to taurine. We determined the crystal structure of mouse CSAD and compared it to other PLP-dependent decarboxylases in order to identify determinants of substrate specificity and catalytic activity. Recognition of the substrate involves distinct side chains forming the substrate-binding cavity. In addition, the backbone conformation of a buried active-site loop appears to be a critical determinant for substrate side chain binding in PLP-dependent decarboxylases. Phe94 was predicted to affect substrate specificity, and its mutation to serine altered both the catalytic properties of CSAD and its stability. Using small-angle X-ray scattering, we further showed that CSAD presents open/close motions in solution. The structure of apo-CSAD indicates that the active site gets more ordered upon internal aldimine formation. Taken together, the results highlight details of substrate recognition in PLP-dependent decarboxylases and provide starting points for structure-based inhibitor design with the aim of affecting the biosynthesis of taurine and other abundant amino acid metabolites.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Weisha Luan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway; Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
5
|
The Changes of Expression and Methylation of Genes Involved in Oxidative Stress in Course of Chronic Mild Stress and Antidepressant Therapy with Agomelatine. Genes (Basel) 2020; 11:genes11060644. [PMID: 32545212 PMCID: PMC7349414 DOI: 10.3390/genes11060644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies conducted so far suggest that oxidative stress processes may be associated with the mechanism of depression development. This study shows the effects of chronic administration of agomelatine on expression and the methylation status of Sod1, Sod2, Gpx1, Gpx4, Cat, Nos1, and Nos2 in the brain stricture and blood in the chronic mild stress (CMS) animal model of depression. The animals were exposed to the CMS procedure and treatment with agomelatine (10 mg/kg/day, IP) for five weeks and then were sacrificed. TaqMan Gene Expression Assay, Western blot, and methylation-sensitive high-resolution melting techniques were used to evaluate mRNA and protein expression of the genes, and the methylation status of their promoters. Gpx1, Gpx4, and Sod2 expression in the PBMCs and Sod1 and Sod2 expression in the brain were reduced in the stressed group after agomelatine administration. CMS caused an increase in the methylation of the third Gpx4 promoter in peripheral blood mononuclear cells and Gpx1 promoter in the cerebral cortex. Additionally, stressed rats treated with agomelatine displayed a significantly lower Gpx4 level in the hypothalamus. The results confirm the hypothesis that the CMS procedure and agomelatine administration change the expression level and methylation status of the promoter region of genes involved in oxidative and nitrosative stress.
Collapse
|
6
|
Wigner P, Synowiec E, Czarny P, Bijak M, Jóźwiak P, Szemraj J, Gruca P, Papp M, Śliwiński T. Effects of venlafaxine on the expression level and methylation status of genes involved in oxidative stress in rats exposed to a chronic mild stress. J Cell Mol Med 2020; 24:5675-5694. [PMID: 32281745 PMCID: PMC7214168 DOI: 10.1111/jcmm.15231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022] Open
Abstract
Recent human and animal studies indicate that oxidative and nitrosative stress may play a role in the aetiology and pathogenesis of depression. This study investigates the effect of chronic administration of the serotonin‐norepinephrine reuptake inhibitor, venlafaxine, on the expression and methylation status of SOD1, SOD2, GPx1, GPx4, CAT, NOS1 and NOS2 in the brain and blood of rats exposed to a chronic mild stress (CMS) model of depression. Separate groups of animals were exposed to CMS for 2 or 7 weeks; the second group received saline or venlafaxine (10 mg/kg/d, IP) for 5 weeks. After completion of both stress conditions and drug administration, the mRNA and protein expression of selected genes and the methylation status of their promoters were measured in peripheral mononuclear blood cells (PBMCs) and in brain structures (hippocampus, amygdala, hypothalamus, midbrain, cortex, basal ganglia) with the use of TaqMan Gene Expression Assay, Western blot and methylation‐sensitive high‐resolution melting techniques. CMS caused a decrease in sucrose consumption, and this effect was normalized by fluoxetine. In PBMCs, SOD1, SOD2 and NOS2 mRNA expression changed only after venlafaxine administration. In brain, CAT, Gpx1, Gpx4 and NOS1 gene expression changed following CMS or venlafaxine exposure, most prominently in the hippocampus, midbrain and basal ganglia. CMS increased the methylation of the Gpx1 promoter in PBMCs, the second Gpx4 promoter in midbrain and basal ganglia, and SOD1 and SOD2 in hippocampus. The CMS animals treated with venlafaxine displayed a significantly higher CAT level in midbrain and cerebral cortex. CMS caused an elevation of Gpx4 in the hippocampus, which was lowered in cerebral cortex by venlafaxine. The results indicate that CMS and venlafaxine administration affect the methylation of promoters of genes involved in oxidative and nitrosative stress. They also indicate that peripheral and central tissue differ in their response to stress or antidepressant treatments. It is possible that that apart from DNA methylation, a crucial role of expression level of genes may be played by other forms of epigenetic regulation, such as histone modification or microRNA interference. These findings provide strong evidence for thesis that analysis of the level of mRNA and protein expression as well as the status of promoter methylation can help in understanding the pathomechanisms of mental diseases, including depression, and the mechanisms of action of drugs effective in their therapy.
Collapse
Affiliation(s)
- Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Piotr Gruca
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Read J, Arnold C. Is Electroconvulsive Therapy for Depression More Effective Than Placebo? A Systematic Review of Studies Since 2009. ETHICAL HUMAN PSYCHOLOGY AND PSYCHIATRY 2017; 19:5-23. [DOI: 10.1891/1559-4343.19.1.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background:A 2010 review of studies, previous reviews and meta-analyses found minimal evidence that electroconvulsive therapy (ECT) for depression was more effective than placebo during the treatment period and no evidence at all of efficacy beyond the end of treatment. The current review explored whether any contradictory evidence has since been generated.Method:MEDLINE and PsycINFO were searched to identify all post-2009 studies that had compared ECT and simulated ECT for depression, or had in any other way generated valid depression data for ECT recipients at two or more points in time.Results:Ninety-one studies met inclusion criteria. There were no new placebo-controlled trials. There have now been no such studies since 1985. Only 4 placebo-controlled studies have ever produced data beyond the end of treatment, none of which have found any advantage for ECT over placebo. Of the 91 studies, only 2 aimed to evaluate the efficacy of ECT. Both were severely flawed. None of the other 89 produced robust evidence that ECT is effective for depression, primarily because at least 60% maintained ECT participants on medication and 89% produced no meaningful follow-up data beyond the end of treatment. No studies investigated whether ECT prevents suicide.Conclusions:There is still no evidence that ECT is more effective than placebo for depression reduction or suicide prevention. Given the well-documented high risk of persistent memory dysfunction, the cost-benefit analysis for ECT remains so poor that its use cannot be scientifically, or ethically, justified.
Collapse
|
8
|
Samuelsson M, Skogh E, Lundberg K, Vrethem M, Öllinger K. Taurine and glutathione in plasma and cerebrospinal fluid in olanzapine treated patients with schizophrenia. Psychiatry Res 2013; 210:819-24. [PMID: 24113127 DOI: 10.1016/j.psychres.2013.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 01/22/2023]
Abstract
Oxidative stress has been implicated in the pathophysiology of schizophrenia. Taurine and glutathione (GSH) have antioxidant and central nervous system protective properties, and are proposed to be involved in the pathology of schizophrenia. The aim of this study was to compare the blood and cerebrospinal fluid (CSF) levels of taurine and GSH in patients with schizophrenia, medicated with oral olanzapine, compared with controls. In total, 37 patients with schizophrenia and 45 healthy volunteers were recruited. We found the plasma taurine levels to be elevated in patients compared with controls. No differences were, however, found between patients and controls regarding taurine in CSF or GSH concentrations in plasma and CSF. Moreover, in the patient group no correlations between taurine and GSH levels and the symptoms or function of the disorder were found. The higher levels of plasma but not CSF taurine in patients with schizophrenia treated with OLA may implicate the involvement of taurine in the pathophysiology of the disease. The absence of GSH differences both in plasma and CSF between patients and controls is interesting in the perspective of earlier research proposing a dysregulation of GSH metabolism as a vulnerability factor for the development of schizophrenia.
Collapse
Affiliation(s)
- Martin Samuelsson
- Division of Psychiatry, Department of Clinical and Experimental Medicine, Linköping University, S-58185 Linköping, Sweden.
| | | | | | | | | |
Collapse
|