1
|
Gao Z, Guo X, Sun Z, Wu S, Wang Q, Huang Q, Bai W, Kou C. Copy number deletion of PLA2G4A affects the susceptibility and clinical phenotypes of schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:55. [PMID: 38816399 PMCID: PMC11139948 DOI: 10.1038/s41537-024-00474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Phospholipase A2(PLA2) superfamily is recognized as being involved in the pathogenesis of schizophrenia by affecting lipid homeostasis in cell membranes. We hypothesized that PLA2 gene copy number variation (CNV) may affect PLA2 enzyme expression and be associated with schizophrenia risk. This study indicated that in the discovery stage, an increased copy number of PLA2G6 and the deletion of PLA2G3, PLA2G4A, PLA2G4F and PLA2G12F was associated with increased risk of schizophrenia. CNV segments involving six PLA2 genes were detected in publicly available datasets, including two deletion segments specific to the PLA2G4A gene. The relationship between the deletion of PLA2G4A and susceptibility to schizophrenia was then reaffirmed in the validation group of 806 individuals. There was a significant correlation between PLA2G4A deletion and the symptoms of poverty of thought in male patients and erotomanic delusion in females. Furthermore, ELISA results demonstrate a significant decrease in peripheral blood cytosolic PLA2(cPLA2) levels in patients with the PLA2G4A deletion genotype compared to those with normal and copy number duplicate genotypes. These data suggest that the functional copy number deletion in the PLA2G4A gene is associated with the risk of schizophrenia and clinical phenotypes by reducing the expression of cPLA2, which may be an indicator of susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Zibo Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xinru Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Zhouyang Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Songyu Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Qianyi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Qianlong Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Wei Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Changgui Kou
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry 2020; 25:1718-1748. [PMID: 31907379 DOI: 10.1038/s41380-019-0601-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
Abstract
Schizophrenia and other psychotic disorders are highly debilitating psychiatric conditions that lack a clear etiology and exhibit polygenic inheritance underlain by pleiotropic genes. The prevailing explanation points to the interplay between predisposing genes and environmental exposure. Accumulated evidence suggests that epigenetic regulation of the genome may mediate dynamic gene-environment interactions at the molecular level by modulating the expression of psychiatric phenotypes through transcription factors. This systematic review summarizes the current knowledge linking schizophrenia and other psychotic disorders to epigenetics, based on PubMed and Web of Science database searches conducted according to the PRISMA guidelines. Three groups of mechanisms in case-control studies of human tissue (i.e., postmortem brain and bio-fluids) were considered: DNA methylation, histone modifications, and non-coding miRNAs. From the initial pool of 3,204 records, 152 studies met our inclusion criteria (11,815/11,528, 233/219, and 2,091/1,827 cases/controls for each group, respectively). Many of the findings revealed associations with epigenetic modulations of genes regulating neurotransmission, neurodevelopment, and immune function, as well as differential miRNA expression (e.g., upregulated miR-34a, miR-7, and miR-181b). Overall, actual evidence moderately supports an association between epigenetics and schizophrenia and other psychotic disorders. However, heterogeneous results and cross-tissue extrapolations call for future work. Integrating epigenetics into systems biology may critically enhance research on psychosis and thus our understanding of the disorder. This may have implications for psychiatry in risk stratification, early recognition, diagnostics, precision medicine, and other interventional approaches targeting epigenetic fingerprints.
Collapse
Affiliation(s)
- Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland. .,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.
| | - Vinita Jagannath
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Merck Sharp & Dohme (MSD) R&D Innovation Centre, London, UK
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany.,Laboratory of Neuroscience, Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Bayoumy NMK, El-Shabrawi MM, Leheta OF, Omar HH. α-Adducin gene promoter DNA methylation and the risk of essential hypertension. Clin Exp Hypertens 2017; 39:764-768. [DOI: 10.1080/10641963.2017.1324481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nervana M. K. Bayoumy
- Physiology Department, College of Medicine, Center of Excellence in Thrombosis & Hemostasis, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed M. El-Shabrawi
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ola Farouk Leheta
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hamdy Hassan Omar
- Internal Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Zong X, Hu M, Li Z, Cao H, Chen X, Tang J. DNA methylation in schizophrenia: progress and challenges. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-014-0690-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Dai D, Cheng J, Zhou K, Lv Y, Zhuang Q, Zheng R, Zhang K, Jiang D, Gao S, Duan S. Significant association between DRD3 gene body methylation and schizophrenia. Psychiatry Res 2014; 220:772-777. [PMID: 25262640 DOI: 10.1016/j.psychres.2014.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 11/24/2022]
Abstract
The current study was the first one to reveal the contribution of DRD3 methylation to the risk of different (SCZ) subtypes. This study comprised a total of 30 paranoid (15 males and 15 females) and 29 undifferentiated (15 males and 14 females) SCZ patients and 26 age- and gender-matched controls. Our results showed a significant association of CpG2 with SCZ. A breakdown analysis by gender showed that CpG2 and CpG3 methylation were significantly higher in male patients than male controls, and that CpG5 methylation was significantly higher in female patients than female controls. A further breakdown analysis by both gender and SCZ subtype showed that CpG2 and CpG3 methylation were significantly higher in male paranoid SCZ and male undifferentiated SCZ than male controls. In contrast, CpG2 and CpG3 methylation were significantly lower in female undifferentiated SCZ than female controls. Additionally, CpG5 methylation was significantly higher in female paranoid SCZ than female controls. In conclusion, our findings supported that DRD3 gene body hypermethylation was significantly associated with the risk of SCZ. Future study is needed to clarify the mechanisms by which DRD3 gene body hypermethylation contributes to the risk of SCZ.
Collapse
Affiliation(s)
- Dongjun Dai
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Cheng
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, China.
| | - Kena Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuelong Lv
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qidong Zhuang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rongjiong Zheng
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kai Zhang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Danjie Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shugui Gao
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, China.
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
6
|
Kinoshita M, Numata S, Tajima A, Ohi K, Hashimoto R, Shimodera S, Imoto I, Takeda M, Ohmori T. Aberrant DNA methylation of blood in schizophrenia by adjusting for estimated cellular proportions. Neuromolecular Med 2014; 16:697-703. [PMID: 25052007 DOI: 10.1007/s12017-014-8319-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 07/08/2014] [Indexed: 01/14/2023]
Abstract
DNA methylation, which is the transference of a methyl group to the 5'-carbon position of the cytosine in a CpG dinucleotide, is one of the major mechanisms of epigenetic modifications. A number of studies have demonstrated altered DNA methylation of peripheral blood cells in schizophrenia (SCZ) in previous studies. However, most of these studies have been limited to the analysis of the CpG sites in CpG islands in gene promoter regions, and cell-type proportions of peripheral leukocytes, which may be one of the potential confounding factors for DNA methylation, have not been adjusted in these studies. In this study, we performed a genome-wide DNA methylation profiling of the peripheral leukocytes from patients with SCZ and from non-psychiatric controls (N = 105; 63 SCZ and 42 control subjects) using a quantitative high-resolution DNA methylation microarray which covered across the whole gene region (485,764 CpG dinucleotides). In the DNA methylation data analysis, we first estimated the cell-type proportions of each sample with a published algorithm. Next, we performed a surrogate variable analysis to identify potential confounding factors in our microarray data. Finally, we conducted a multiple linear regression analysis in consideration of these factors, including estimated cell-type proportions, and identified aberrant DNA methylation in SCZ at 2,552 CpG loci at a 5% false discovery rate correction. Our results suggest that altered DNA methylation may be involved in the pathophysiology of SCZ, and cell heterogeneity adjustments may be necessary for DNA methylation analysis.
Collapse
Affiliation(s)
- Makoto Kinoshita
- Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-8-15, Kuramoto-cho, Tokushima, 770-8503, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Dai D, Wang Y, Yuan J, Zhou X, Jiang D, Li J, Zhang Y, Yin H, Duan S. Meta-analyses of 10 polymorphisms associated with the risk of schizophrenia. Biomed Rep 2014; 2:729-736. [PMID: 25054019 DOI: 10.3892/br.2014.308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/23/2014] [Indexed: 01/15/2023] Open
Abstract
Schizophrenia (SCZ) is a severe complex psychiatric disorder that generates problems for the associated family and society and causes disability with regards to work for patients. The aim of the present study was to assess the contribution of 10 genetic polymorphisms to SCZ susceptibility. Meta-analyses were conducted using the data without a limitation for time or language. A total of 27 studies with 7 genes and 10 polymorphisms were selected for the meta-analyses. Two polymorphisms were found to be significantly associated with SCZ. SNAP25 rs3746544 was shown to increase the SCZ risk by 18% [P=0.01; odds ratio (OR), 1.18; 95% confidence interval (CI), 1.05-1.34] and GRIK3 rs6691840 was found to increase the risk by 30% (P=0.008; OR, 1.30; 95% CI, 1.07-1.58). Significant results were found under the dominant (P=0.001; OR, 1.36; 95% CI, 1.13-1.65) and additive (P=0.02; OR, 1.45; 95% CI, 1.06-1.98) model for the SNAP25 rs3746544 polymorphism and under the additive model for the GRIK3 rs6691840 polymorphism (P=0.03; OR, 1.73; 95% CI, 1.04-2.85). There were no significant results observed for the other eight polymorphisms, which were CCKAR rs1800857, CHRNA7 rs904952, CHRNA7 rs6494223, CHRNA7 rs2337506, DBH Ins>Del, FEZ1 rs559668, FEZ1 rs597570 and GCLM rs2301022. In conclusion, the present meta-analyses indicated that the SNAP25 rs3746544 and GRIK3 rs6691840 polymorphisms were risk factors of SCZ, which may provide valuable information for the clinical diagnosis of SCZ.
Collapse
Affiliation(s)
- Dongjun Dai
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yunliang Wang
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Jiaojiao Yuan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xingyu Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Danjie Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jinfeng Li
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Yuzheng Zhang
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Honglei Yin
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
8
|
Association of P2Y12 gene promoter DNA methylation with the risk of clopidogrel resistance in coronary artery disease patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:450814. [PMID: 24745016 PMCID: PMC3976931 DOI: 10.1155/2014/450814] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 02/06/2023]
Abstract
Background. Clopidogrel inhibits the ADP receptor P2Y12 to keep down the platelet aggregation. The goal of our study is to investigate the contribution of P2Y12 promoter DNA methylation to the risk of clopidogrel resistance (CR). Methods. The platelet functions were measured by the VerifyNow P2Y12 assay. Applying the bisulfite pyrosequencing technology, DNA methylation levels of two CpG dinucleotides on P2Y12 promoter were tested among 49 CR cases and 57 non-CR controls. We also investigated the association among P2Y12 DNA methylation, various biochemical characteristics, and CR. Result. Lower methylation of two CpGs indicated the poorer clopidogrel response (CpG1, P = 0.009; CpG2, P = 0.022) in alcohol abusing status. Meanwhile CpG1 methylation was inversely correlated with CR in smoking patients (P = 0.026) and in subgroup of Albumin < 35 (P = 0.002). We observed that the level of DNA methylation might be affected by some clinical markers, such as TBIL, LEVF, Albumin, AST. The results also showed that the quantity of stent, fasting blood-glucose, and lower HbAC1 were the predictors of CR. Conclusions. The evidence from our study indicates that P2Y12 methylation may bring new hints to elaborate the pathogenesis of CR.
Collapse
|
9
|
DNA methylation in complex disease: Applications in nursing research, practice, and policy. Nurs Outlook 2013; 61:235-241.e4. [DOI: 10.1016/j.outlook.2013.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/23/2013] [Accepted: 04/28/2013] [Indexed: 12/31/2022]
|
10
|
Lower ADD1 gene promoter DNA methylation increases the risk of essential hypertension. PLoS One 2013; 8:e63455. [PMID: 23691048 PMCID: PMC3655193 DOI: 10.1371/journal.pone.0063455] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/02/2013] [Indexed: 02/06/2023] Open
Abstract
The goal of our study is to investigate the contribution of promoter DNA methylation of α-adducin (ADD1) gene to the risk of essential hypertension (EH). Using the bisulphite pyrosequencing technology, DNA methylation levels of five CpG dinucleotides on ADD1 promoter were measured among 33 EH cases and 28 healthy controls. Significantly higher ADD1 DNA methylation levels were observed in the females than in the males (CpG1: P = 0.016; CpG2-5: P = 0.021). A breakdown analysis by gender showed that lower CpG1 methylation was associated with an increased risk of EH in females (adjusted P = 0.042). A much more significant association between lower CpG2-5 methylation levels and the increased risk of EH was found in males (adjusted P = 0.008). CpG1 methylation was inversely correlated with age in females (r = -0.407, P = 0.019) but not in males. ADD1 CpG1 and CpG2-5 methylation levels were significantly lower in post-menopausal (>50 years) women than pre-menopausal (≤50 years) women (CpG1: P = 0.006; CpG2-5: P = 0.034). A significant interaction between CpG1 methylation and age was found in females (CpG1*age: P = 0.029). CpG2-5 methylation was shown as a significant predictor of EH in males [area under curve (AUC) = 0.855, P = 0.001], in contrast that CpG1 methylation was a trend toward indicator in females (AUC = 0.699, P = 0.054). In addition, significant differences were observed between males and females for alanine aminotransferase (ALT, P = 0.001), aspartate aminotransferase (AST, P = 0.005) and uric acid (P<0.001). The concentration of AST was inversely correlated with ADD1 CpG2-5 methylation levels in female controls (r = -0.644, P = 0.024). These observations may bring new hints to elaborate the pathogenesis of EH.
Collapse
|