1
|
Qu T, Sun Y, Zhao J, Liu N, Yang J, Lyu D, Huang W, Zhan W, Li T, Yao Z, Yan R, Zhang H, Hong H, Shi L, Meng X, Yin B. Scoulerine: A natural isoquinoline alkaloid targeting SLC6A3 to treat RCC. Biomed Pharmacother 2024; 180:117524. [PMID: 39395255 DOI: 10.1016/j.biopha.2024.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Scoulerine, an isoquinoline alkaloid derived from the corydalis plant, exhibits diverse therapeutic properties against tumors, Alzheimer's disease, and inflammation. This research delves into the pharmacological impact and underlying mechanism of scoulerine on renal cell carcinoma (RCC). Our findings suggest that Scoulerine displays promise as a potential therapeutic agent for RCC, demonstrating notable inhibitory effects in both in vivo and in vitro models. In addition, scoulerine inhibited the viability of 769-P and 786-O cell lines in a time-dependent and dose-dependent manner, and promoted the level of apoptosis associated with B-cell lymphoma-2 associated X protein (Bax). Moreover, the administration of scoulerine resulted in a significant suppression of the mitogen activated protein kinase (MAPK) signaling pathway. Subsequently, utilizing bioinformatics and spatial transcriptomic databases, we identified solute carrier family 6 Member 3 (SLC6A3) as the most promising target of scoulerine. Through experimental validation, we confirmed the functional and therapeutic relevance of SLC6A3 in scoulerine-mediated treatment of RCC. The results of our study indicate a significant affinity between scoulerine and SLC6A3, with competitive inhibition of this interaction leading to a reduction in the inhibitory impact of scoulerine on RCC cell viability. In conclusion, our findings suggest that scoulerine may induce apoptosis in RCC by targeting SLC6A3 and inhibiting the activation of the MAPK signaling pathway, thereby positioning it as a promising natural compound for potential future RCC treatment.
Collapse
Affiliation(s)
- Tianrui Qu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Nanqi Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Jianli Yang
- Department of Laboratory Animals, China Medical University, Shenyang, Liaoning 110122, China
| | - Dantong Lyu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Wenjie Huang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Weizhen Zhan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Zichuan Yao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rongbo Yan
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hong Hong
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Liye Shi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
2
|
Saha S, Chatterjee M, Shom S, Sinha S, Mukhopadhyay K. Functional SLC6A3 polymorphisms differentially affect autism spectrum disorder severity: a study on Indian subjects. Metab Brain Dis 2022; 37:397-410. [PMID: 34845656 DOI: 10.1007/s11011-021-00876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Imbalance in dopamine (DA) signaling is proposed to play a potential role in the etiology of Autism spectrum disorder (ASD) since, as a neuromodulator, DA regulates executive function, motor activity, social peering, attention as well as perception and subjects with ASD often exhibit deficit in these traits. Level of DA in the synaptic cleft is maintained by dopamine transporter (DAT) and hence, to identify the role of DAT in ASD, we have analyzed four functional genetic variants, rs28363170, rs3836790, rs2652511, rs27072, in nuclear families with ASD probands. Subjects were diagnosed based on Diagnostic and Statistical Manual for Mental Disorders and trait severity was assessed by Childhood Autism Rating Scale 2-Standard test. Informed written consent was obtained from the parents/care givers before recruitment followed by collection of peripheral blood for genomic DNA isolation. Target sites were investigated by PCR-based methods and data obtained was analyzed by population- as well as family-based statistical methods. Case-control analysis revealed significant higher frequencies of 9 repeat (9R) and 5 repeat (5R) alleles of rs28363170 and rs3836790 respectively in the ASD probands. Family-based analysis showed statistically significant higher paternal transmission of rs28363170 9R and rs2652511 T alleles. In the presence of rs28363170 9R, rs27072 C, rs3836790 6R6R, and rs2652511 CC variants, trait scores were higher. Studied variants showed independent as well as interactive effects, which varied based on gender of the probands. We infer that altered DA availability mediated through DAT may affect autistic traits warranting further in depth investigation in the field.
Collapse
Affiliation(s)
- Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Sayanti Shom
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India.
| |
Collapse
|
3
|
Cacabelos R, Naidoo V, Martínez-Iglesias O, Corzo L, Cacabelos N, Pego R, Carril JC. Pharmacogenomics of Alzheimer's Disease: Novel Strategies for Drug Utilization and Development. Methods Mol Biol 2022; 2547:275-387. [PMID: 36068470 DOI: 10.1007/978-1-0716-2573-6_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD) is a priority health problem in developed countries with a high cost to society. Approximately 20% of direct costs are associated with pharmacological treatment. Over 90% of patients require multifactorial treatments, with risk of adverse drug reactions (ADRs) and drug-drug interactions (DDIs) for the treatment of concomitant diseases such as hypertension (>25%), obesity (>70%), diabetes mellitus type 2 (>25%), hypercholesterolemia (40%), hypertriglyceridemia (20%), metabolic syndrome (20%), hepatobiliary disorder (15%), endocrine/metabolic disorders (>20%), cardiovascular disorder (40%), cerebrovascular disorder (60-90%), neuropsychiatric disorders (60-90%), and cancer (10%).For the past decades, pharmacological studies in search of potential treatments for AD focused on the following categories: neurotransmitter enhancers (11.38%), multitarget drugs (2.45%), anti-amyloid agents (13.30%), anti-tau agents (2.03%), natural products and derivatives (25.58%), novel synthetic drugs (8.13%), novel targets (5.66%), repository drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and other compounds (<1%).Pharmacogenetic studies have shown that the therapeutic response to drugs in AD is genotype-specific in close association with the gene clusters that constitute the pharmacogenetic machinery (pathogenic, mechanistic, metabolic, transporter, pleiotropic genes) under the regulatory control of epigenetic mechanisms (DNA methylation, histone/chromatin remodeling, microRNA regulation). Most AD patients (>60%) are carriers of over ten pathogenic genes. The genes that most frequently (>50%) accumulate pathogenic variants in the same AD case are A2M (54.38%), ACE (78.94%), BIN1 (57.89%), CLU (63.15%), CPZ (63.15%), LHFPL6 (52.63%), MS4A4E (50.87%), MS4A6A (63.15%), PICALM (54.38%), PRNP (80.7059), and PSEN1 (77.19%). There is also an accumulation of 15 to 26 defective pharmagenes in approximately 85% of AD patients. About 50% of AD patients are carriers of at least 20 mutant pharmagenes, and over 80% are deficient metabolizers for the most common drugs, which are metabolized via the CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 enzymes.The implementation of pharmacogenetics can help optimize drug development and the limited therapeutic resources available to treat AD, and personalize the use of anti-dementia drugs in combination with other medications for the treatment of concomitant disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain.
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Olaia Martínez-Iglesias
- Department of Medical Epigenetics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Rocío Pego
- Department of Neuropsychology, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Juan C Carril
- Department of Genomics and Pharmacogenomics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
4
|
Zhao X, Yao H, Li X. Unearthing of Key Genes Driving the Pathogenesis of Alzheimer's Disease via Bioinformatics. Front Genet 2021; 12:641100. [PMID: 33936168 PMCID: PMC8085575 DOI: 10.3389/fgene.2021.641100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/15/2021] [Indexed: 01/23/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with unelucidated molecular pathogenesis. Herein, we aimed to identify potential hub genes governing the pathogenesis of AD. The AD datasets of GSE118553 and GSE131617 were collected from the NCBI GEO database. The weighted gene coexpression network analysis (WGCNA), differential gene expression analysis, and functional enrichment analysis were performed to reveal the hub genes and verify their role in AD. Hub genes were validated by machine learning algorithms. We identified modules and their corresponding hub genes from the temporal cortex (TC), frontal cortex (FC), entorhinal cortex (EC), and cerebellum (CE). We obtained 33, 42, 42, and 41 hub genes in modules associated with AD in TC, FC, EC, and CE tissues, respectively. Significant differences were recorded in the expression levels of hub genes between AD and the control group in the TC and EC tissues (P < 0.05). The differences in the expressions of FCGRT, SLC1A3, PTN, PTPRZ1, and PON2 in the FC and CE tissues among the AD and control groups were significant (P < 0.05). The expression levels of PLXNB1, GRAMD3, and GJA1 were statistically significant between the Braak NFT stages of AD. Overall, our study uncovered genes that may be involved in AD pathogenesis and revealed their potential for the development of AD biomarkers and appropriate AD therapeutics targets.
Collapse
Affiliation(s)
- Xingxing Zhao
- Department of Neurology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China.,Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongmei Yao
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyi Li
- Department of Neurology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Macedo A, Gómez C, Rebelo MÂ, Poza J, Gomes I, Martins S, Maturana-Candelas A, Pablo VGD, Durães L, Sousa P, Figueruelo M, Rodríguez M, Pita C, Arenas M, Álvarez L, Hornero R, Lopes AM, Pinto N. Risk Variants in Three Alzheimer's Disease Genes Show Association with EEG Endophenotypes. J Alzheimers Dis 2021; 80:209-223. [PMID: 33522999 PMCID: PMC8075394 DOI: 10.3233/jad-200963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Dementia due to Alzheimer’s disease (AD) is a complex neurodegenerative disorder, which much of heritability remains unexplained. At the clinical level, one of the most common physiological alterations is the slowing of oscillatory brain activity, measurable by electroencephalography (EEG). Relative power (RP) at the conventional frequency bands (i.e., delta, theta, alpha, beta-1, and beta-2) can be considered as AD endophenotypes. Objective: The aim of this work is to analyze the association between sixteen genes previously related with AD: APOE, PICALM, CLU, BCHE, CETP, CR1, SLC6A3, GRIN2
β, SORL1, TOMM40, GSK3
β, UNC5C, OPRD1, NAV2, HOMER2, and IL1RAP, and the slowing of the brain activity, assessed by means of RP at the aforementioned frequency bands. Methods: An Iberian cohort of 45 elderly controls, 45 individuals with mild cognitive impairment, and 109 AD patients in the three stages of the disease was considered. Genomic information and brain activity of each subject were analyzed. Results: The slowing of brain activity was observed in carriers of risk alleles in IL1RAP (rs10212109, rs9823517, rs4687150), UNC5C (rs17024131), and NAV2 (rs1425227, rs862785) genes, regardless of the disease status and situation towards the strongest risk factors: age, sex, and APOE ɛ4 presence. Conclusion: Endophenotypes reduce the complexity of the general phenotype and genetic variants with a major effect on those specific traits may be then identified. The found associations in this work are novel and may contribute to the comprehension of AD pathogenesis, each with a different biological role, and influencing multiple factors involved in brain physiology.
Collapse
Affiliation(s)
- Ana Macedo
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,JTA: The Data Scientists, Porto, Portugal
| | - Carlos Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Miguel Ângelo Rebelo
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jesús Poza
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Valladolid, Spain
| | - Iva Gomes
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | | | - Luis Durães
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Lavra, Portugal
| | - Patrícia Sousa
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Lavra, Portugal
| | - Manuel Figueruelo
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - María Rodríguez
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - Carmen Pita
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - Miguel Arenas
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,CINBIO (Biomedical Research Center), University of Vigo, Vigo, Spain.,Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Luis Álvarez
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Adeneas, Valencia, Spain
| | - Roberto Hornero
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Valladolid, Spain
| | - Alexandra M Lopes
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nádia Pinto
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Centro de Matemática da Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Grünblatt E, Werling AM, Roth A, Romanos M, Walitza S. Association study and a systematic meta-analysis of the VNTR polymorphism in the 3'-UTR of dopamine transporter gene and attention-deficit hyperactivity disorder. J Neural Transm (Vienna) 2019; 126:517-529. [PMID: 30923918 PMCID: PMC6456487 DOI: 10.1007/s00702-019-01998-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/24/2019] [Indexed: 01/21/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) has been postulated to associate with dopaminergic dysfunction, including the dopamine transporter (DAT1). Several meta-analyses showed small but significant association between the 10-repeat allele in the DAT1 gene in 3'-untranslated region variant number tandem repeat polymorphism and child and adolescent ADHD, whereas in adult ADHD the 9-repeat allele was suggested to confer as risk allele. Interestingly, recent evidence indicated that the long-allele variants (10 repeats and longer) might confer to lower expression of the transporter in comparison to the short-allele. Therefore, we assessed here the association in samples consisting of families with child and adolescent ADHD as well as a case-control sample, using either the 10- versus 9-repeat or the long- versus short-allele approach. Following, we conducted a systematic review and meta-analysis, including family and case-control studies, using the two aforementioned approaches as well as stratifying to age and ethnicity. The first approach (10-repeat) resulted in nominal significant association in child and adolescent ADHD (OR 1.1050 p = 0.0128), that became significant stratifying to European population (OR 1.1301 p = 0.0085). The second approach (long-allele) resulted in significant association with the whole ADHD population (OR 1.1046 p = 0.0048), followed by significant association for child and adolescent ADHD (OR 1.1602 p = 0.0006) and in Caucasian and in European child and adolescent ADHD (OR 1.1310 p = 0.0114; OR 1.1661 p = 0.0061; respectively). We were not able to confirm the association reported in adults using both approaches. In conclusion, we found further indication for a possible DAT1 gene involvement; however, further studies should be conducted with stringent phenotyping to reduce heterogeneity, a limitation observed in most included studies.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
- Translational Molecular Psychiatry, Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Child and Adolescent Psychiatry Research, University Hospital of Psychiatry Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
| | - Anna Maria Werling
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Roth
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wuerzburg, Würzburg, Germany
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Marinho V, Oliveira T, Bandeira J, Pinto GR, Gomes A, Lima V, Magalhães F, Rocha K, Ayres C, Carvalho V, Velasques B, Ribeiro P, Orsini M, Bastos VH, Gupta D, Teixeira S. Genetic influence alters the brain synchronism in perception and timing. J Biomed Sci 2018; 25:61. [PMID: 30086746 PMCID: PMC6080374 DOI: 10.1186/s12929-018-0463-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Background Studies at the molecular level aim to integrate genetic and neurobiological data to provide an increasingly detailed understanding of phenotypes related to the ability in time perception. Main Text This study suggests that the polymorphisms genetic SLC6A4 5-HTTLPR, 5HTR2A T102C, DRD2/ANKK1-Taq1A, SLC6A3 3’-UTR VNTR, COMT Val158Met, CLOCK genes and GABRB2 A/C as modification factor at neurochemical levels associated with several neurofunctional aspects, modifying the circadian rhythm and built-in cognitive functions in the timing. We conducted a literature review with 102 studies that met inclusion criteria to synthesize findings on genetic polymorphisms and their influence on the timing. Conclusion The findings suggest an association of genetic polymorphisms on behavioral aspects related in timing. However, order to confirm the paradigm of association in the timing as a function of the molecular level, still need to be addressed future research.
Collapse
Affiliation(s)
- Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil. .,Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil. .,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil.
| | - Thomaz Oliveira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Juliete Bandeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil
| | - Giovanny R Pinto
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Anderson Gomes
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Valéria Lima
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Francisco Magalhães
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Kaline Rocha
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Carla Ayres
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil
| | - Valécia Carvalho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Orsini
- Master's Program in Local Development Program, University Center Augusto Motta - UNISUAM, Rio de Janeiro, Brazil and Health Sciences Applied - Vassouras University, Rio de Janeiro, Brazil
| | - Victor Hugo Bastos
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Daya Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
8
|
Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S. The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 2017; 128:262-282. [PMID: 28950734 DOI: 10.1080/00207454.2017.1385614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dopaminergic system plays a key role in perception, which is an important executive function of the brain. Modulation in dopaminergic system forms an important biochemical underpinning of neural mechanisms of time perception in a very wide range, from milliseconds to seconds to longer daily rhythms. Distinct types of temporal experience are poorly understood, and the relationship between processing of different intervals by the brain has received little attention. A comprehensive understanding of interval timing functions should be sought within a wider context of temporal processing, involving genetic aspects, pharmacological models, cognitive aspects, motor control and the neurological diseases with impaired dopaminergic system. Particularly, an unexplored question is whether the role of dopamine in interval timing can be integrated with the role of dopamine in non-interval timing temporal components. In this review, we explore a wider perspective of dopaminergic system, involving genetic polymorphisms, pharmacological models, executive functions and neurological diseases on the time perception. We conclude that the dopaminergic system has great participation in impact on time perception and neurobiological basis of the executive functions and neurological diseases.
Collapse
Affiliation(s)
- Victor Marinho
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil.,b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Thomaz Oliveira
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil.,b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Kaline Rocha
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Jéssica Ribeiro
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Francisco Magalhães
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Thalys Bento
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Giovanny R Pinto
- b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Bruna Velasques
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Pedro Ribeiro
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Luiza Di Giorgio
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Marco Orsini
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil.,d Rehabilitation Science Program, Analysis of Human Movement Laboratory, Augusto Motta University Center (UNISUAM) , Rio de Janeiro , Brazil
| | - Daya S Gupta
- e Department of Biology , Camden County College , Blackwood , NJ , USA
| | - Juliana Bittencourt
- f Biomedical Engineering Program (COPPE), Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil
| | - Victor Hugo Bastos
- g Brain Mapping and Functionality Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Silmar Teixeira
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| |
Collapse
|
9
|
Du K, Liu M, Pan Y, Zhong X, Wei M. Association of Serum Manganese Levels with Alzheimer's Disease and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Nutrients 2017; 9:nu9030231. [PMID: 28273828 PMCID: PMC5372894 DOI: 10.3390/nu9030231] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/28/2017] [Indexed: 01/20/2023] Open
Abstract
Manganese (Mn) is one of the most studied environmental heavy metals linked to Alzheimer’s disease (AD). However, it remains unclear whether serum Mn levels are associated with AD and mild cognition impairment (MCI, a prodromal stage of AD). We conducted a meta-analysis to analyze the serum Mn levels in patients with AD and MCI. A systematic database search of PubMed, Web of Science, and the China National Knowledge Infrastructure (CNKI) identified 17 studies, including 836 cases and 1254 health controls (HC). Random-effects meta-analysis showed that patients with AD had significantly reduced serum Mn levels compared with HC subjects (SMD = −0.39; 95% CI (−0.71, −0.08); p = 0.015). MCI individuals had a tendency toward reduced serum Mn levels compared with HC subjects (SMD = −0.31; 95% CI (−0.70, 0.08); p = 0.117). A significant decrease in serum Mn levels was found in patients with cognitive impairment (including both AD patients and MCI patients) (SMD = −0.37, 95% CI (−0.60; −0.13); p = 0.002). Finally, no significant differences were observed between AD and MCI patients in serum levels (SMD = 0.24; 95% CI (−0.23, 0.72); p = 0.310). Our findings show that the serum Mn levels are lower in AD patients, and Mn deficiency may be a risk factor for AD.
Collapse
Affiliation(s)
- Ke Du
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China.
| | - Mingyan Liu
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China.
| | - Yanzhu Pan
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China.
| | - Xin Zhong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China.
| | - Minjie Wei
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang 110122, China.
| |
Collapse
|
10
|
Jia X, Wang F, Han Y, Geng X, Li M, Shi Y, Lu L, Chen Y. miR-137 and miR-491 Negatively Regulate Dopamine Transporter Expression and Function in Neural Cells. Neurosci Bull 2016; 32:512-522. [PMID: 27628529 DOI: 10.1007/s12264-016-0061-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
The dopamine transporter (DAT) is involved in the regulation of extracellular dopamine levels. A 40-bp variable-number tandem repeat (VNTR) polymorphism in the 3'-untranslated region (3'UTR) of the DAT has been reported to be associated with various phenotypes that are involved in the aberrant regulation of dopaminergic neurotransmission. In the present study, we found that miR-137 and miR-491 caused a marked reduction of DAT expression, thereby influencing neuronal dopamine transport. Moreover, the regulation of miR-137 and miR-491 on this transport disappeared after the DAT was silenced. The miR-491 seed region that is located on the VNTR sequence in the 3'UTR of the DAT and the regulatory effect of miR-491 on the DAT depended on the VNTR copy-number. These data indicate that miR-137 and miR-491 regulate DAT expression and dopamine transport at the post-transcriptional level, suggesting that microRNA may be targeted for the treatment of diseases associated with DAT dysfunction.
Collapse
Affiliation(s)
- Xiaojian Jia
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Feng Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.,Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ying Han
- Institute of Mental Health, Peking University Sixth Hospital and Key Laboratory of Mental Health, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Xuewen Geng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Minghua Li
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yu Shi
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital and Key Laboratory of Mental Health, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|